
 

 1 

ECCM 2010 
IV European Conference on Computational Mechanics 

Palais des Congrès, Paris, France, May 16-21, 2010 

Bifurcations of an elastic model with nonsmooth material law 

Z. Gáspár1, T. Tarnai1, K. Hincz1 
 
1 Budapest University of Technology and Economics, Hungary, {gaspar@ep-mech.me.bme.hu, tarnai@ep-mech.me.bme.hu, 

hinczkrisztian@yahoo.com} 

Abstract – How must 5 equal discs of given radius r be arranged on the unit circle so that the area of the 
intersection of the unit circle and the union of the 5 discs will be a maximum; and how does the solution change 
if r varies from the maximum packing radius to the minimum covering radius? In this paper, a mechanical model 
is introduced to analyse this mathematical problem. A generalized tensegrity structure is associated to a 
maximum area configuration of the 5 discs, and by using catastrophe theory, it is pointed out that the 
“equilibrium paths” have bifurcations, that is, at certain values of r, the type of the tensegrity structure and so the 
type of the disc configuration changes. 

 
1. Introduction   

 
One of the well-known problems in discrete geometry is the following [2]: How must n equal 

circles be packed in the unit circle without overlapping so that the radius of the circles will be as large 
as possible? This packing problem has a dual counterpart in covering: How must the unit circle be 
covered by n equal circles without interstices so that the radius of the circles will be as small as 
possible? For a given n, let rmax and Rmin denote the maximum radius in the packing problem and the 
minimum radius in the covering problem, respectively. For circles with radius r such that 

minmax Rrr ≤≤ , recently, Connelly [3] posed a problem intermediate between these two: How must 

the centres of n equal discs of given radius r be distributed in the unit circle so that, in the unit circle, 
the area covered by the discs will be a maximum? This intermediate problem is the topic of the 
present paper. It should be noted that earlier Fejes Tóth [5] raised and Fowler and Tarnai [6] analysed 
numerically a similar intermediate problem on the sphere. 

Connelly [3] considered the case of n = 5 as an example (see Figure 1), and wanted to know that, 
with a continuous increase in r, how the disc configuration changes in the transition from the 
maximum packing to the minimum covering.  

 

 
 

Figure 1: Arrangement of 5 equal circles in a unit circle, the uncovered area is in blue 
 

If r is close to the maximum packing radius then the discs have only double overlaps, like in 
Figure 1. In this case, the maximum area can be determined with a formula of Csikós [4]. Connelly [3] 
worked out a stress interpretation of Csikós’s formula, and showed how a tensegrity structure can be 
associated to the maximum area configuration. However, if r is close to the minimum covering radius 
then the discs can have some triple overlaps for which, though Csikós’s formula is still valid, it is not 
known how to construct a mechanical model to represent the maximum area configuration.  

In this paper, we will show that, in the case of triple overlaps, the equivalent mechanical model of 
the maximum area configuration of discs is a generalized tensegrity structure which, additionally to 
struts and cables, contains also triangular elements (known as in-plane loaded plate elements in the 
finite element techniques). In the numerical investigation, stability problems of the configuration were 
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found for certain values of r. If r is plotted against properly selected active variables then space curves 
analogous to equilibrium paths are obtained where, at certain points, bifurcation phenomena are 
detected. Catastrophe theory will be used to analyse these bifurcations, properties of some of which, 
however, are beyond the elementary catastrophe theory [7]. At general points of the “equilibrium 
paths”, the numerical calculation was executed with the method of dynamic relaxation, while to 
determine the bifurcation points, iteration using the tangent stiffness matrix of the structure was 
applied. The different phenomena and properties will be shown through the example of the 
intermediate problem of 5 discs.  

 
2. Packing of 5 equal circles 

 
As shown first by Graham [8], the largest radius of circles which can be arranged in the unit 

circle without overlapping is 

( )

( )max

sin / 5
0.3701919083

1 sin / 5
r

π
= =
+ π

. 

The arrangement has D5h symmetry. The (local) optimum of the arrangement can be checked by a 
bar-and-joint model (see Figure 2). The joints of the structure are the centres of the circles; two joints 
are connected by a bar if the corresponding circles touch each other. Each joint laying on the circle 
with radius 1−r is supported by a roller in the radial direction. If the arrangement is optimal, then the 
structure can be in a state of self-stress where there are no bars in tension [9]. 

 
Figure 2: Maximum packing of 5 equal circles in the unit circle, and its mechanical model 

 
3. Covering by 5 circles 

 
One might think that the optimal covering has also D5h symmetry, where the radius is 

( )
1

0,6180339890
2cos / 5

R= =
π

. 

The optimal covering can be checked by another model based on a bipartite graph, where the 
vertices of the first kind are the centres of the circles and the vertices of the second kind are the points 
of the perimeters of the circles in which the unit circle is only just covered. (In Figure 3, the vertices of 
the first kind are marked by small circles but the vertices of the second kind have no special mark.) 

The centre of the unit circle is covered by 5 circles. In such a case this second kind vertex must be 
tripled, and suitable bars must be doubled while three bars will meet at each vertex (see Figure 4 left). 
If a covering is optimal, then the structure can be in a state of self-stress where there are no bars in 
compression [10]. Since in this case some bars are in compression, they ought to be dropped, and the 
whole structure can be cooled while we arrive to the optimal state which is shown in the right side of 
Figure 4. As proved by Bezdek [1], the smallest radius when 5 circles can cover the unit circle 
is min 0.6093828641R = . This structure can be in a state of self-stress with all bars in tension. 

 

1-r
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Figure 3: Covering the unit circle by 5 equal circles in D5h symmetry, and its mechanical model  

 
 

 
 

Figure 4: Model with a tripled vertex (left side) and the model of the optimal covering (right side)   
 

4. Transition from packing to covering 
 
If r is only a little larger than the maximum packing radius ( )maxr  then the discs have double 

overlaps (pairwise intersections). In such a case, the motion of the discs can be described as a function 
of a parameter, and the derivative of the area with respect to the motion parameter can be expressed 
with a formula of Csikós [4]. The condition, that the derivative is equal to zero, determines the 
maximum area configuration of the discs. Connelly has provided a stress interpretation of Csikós’s 
formula, and shown how a tensegrity framework can be associated to the maximum area 
configuration. However, if r is close to the minimum covering radius, then the discs have some triple 
overlaps for which it is not known how to set up an equivalent mechanical model to obtain the 
solution to the mathematical problem. 

 In this paper, we introduce cables to model the overlaps of a circle and the unit circle, struts to 
model the overlaps of two circles, and triangular elements to model the triple overlaps of the circles 
(see Figure 5). Since the types of the symmetry are different for the optimal packing and covering, 
there must be some stability phenomena while r increases from maxr  to minR . 
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Figure 5: The model contains 5 cables (red), 10 struts (blue) and 5 triangular elements (green) 

 
4.1. Material laws 

 
The material laws are nonsmooth.  
 

Cables 
 
If a circle intersects the unit circle, the corresponding cable becomes active, and a tensional force 

(S) arises in it. The magnitude of this force is  
 

( )
1

2 2 2

0 if 1

4 1 / if 1

L rdA
S

dL L L r L L r

 ≤ −= =
 − + − > −

 

which is equal to the length of the chord between the two points of intersection (see Figure 6).  

r
1

A1

L

 

Figure 6: Intersection of a small circle with the unit circle 
 

Struts 

If a circle intersects the unit circle, the corresponding strut becomes active, and a compression 
force (S) arises in it. The magnitude of this force is  

 
2 2

2 4 if 2

0 if 2

dA r L L r
S

dL L r

− − <= =
 ≥

, 

which is equal to the length of the chord between the two points of intersection (see Figure 7).  
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r

L

A2

 
 

Figure 7: Intersection of two small circles 
 

Triangular elements 

If three circles have an area in common, the corresponding triangular element becomes active, 

and tensional forces ( ), 1,2,3iQ i=  might arise in its edges. Magnitudes of these forces are (see 

Figure 8): 

( )3 1 2 3, ,
i

i

A L L L
Q

L

∂
=

∂
. 

L2

L1

L3

2

1

3A3

L3

Q1

L2

L1
Q2

Q3

 

Figure 8: The common area of three circles (left) and the geometrical explanation of the forces 
(right) 

 
The geometrical explanation of the edge forces is the following: we have considered the 

compression force in a strut as the length of the appropriate chord, but only the length of the 
appropriate edge of the Voronoi cell will appear in it. So the magnitude of the edge (tension) forces is 
the difference of the two lengths. 

Angles of the triangle are (we use a cyclic order among the subscripts): 

2 2 2
1 1

1 1

arccos
2

i i i
i

i i

L L L

L L
− +

− +

+ −
β = . 

Radius of the circle drawn through the vertices of the triangle (for any i): 

2sin
i

i

L
R=

β
. 
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Figure 9: Explanation of the variables 
 
If R r>  then the triangular element is passive (every edge force is zero). If R r< , then the 

auxiliary variables shown in Figure 9 are: 

 
2 2 2

1 1

14
i i i

i
i

L L L
a

L
− +

−

− −
= ,  2 2 / 4i ic r L= − , 

 1sini i ib c += β ,   2 2 / 4i id R L= − . 

The edge forces: 

    

2 if 0

if 0

if 0

0 if 0

i i i

i i i i i
i

i i i i i

i i

c a b

c d a b a
Q

c d a a b

a b

 < − + − < <=
 − < < + + <

.  

 
4.2. Solution by dynamic relaxation 

 
Using the model shown in Figure 5 and the constitutive equations given in Subsection 4.1 with 

the help of the dynamic relaxation, one can compute an equilibrium position for any given 

( )max min,r r R∈ . The radius is increased in small steps in this interval. For every r we start the 

iteration with the final coordinates of the arrangement belonging to the previous value of r. Figure 10 
shows the coverage of the unit circle as the function of r.  

Different types of the shapes are shown with different colours, one example for each type is 
shown in Figure 11. 



 7 

 

Figure 10: Coverage as function of the radius  
 
 a)     b) 

 
 c)     d) 

 
 

Figure 11: Different types of shape: (a) D5h r=0.500, (b) egg r=0.505,  
(c) no symmetry r=0.511, (d) pumpkin r=0.520 
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Figure 12 shows that the number of the iteration steps increases very strongly when the type of 
the shape changes. One might think that the dynamic relaxation converges to the optimal arrangement 
for every fixed radius, but the borders between the shape types may change a little if we start with a 
large value of r, and we decrease it step by step using the same values as earlier. Of course we can use 
smaller steps, but this method is suitable neither to compute the exact value of the borders nor to find 
every equilibrium path (so to determine the types of the bifurcation points). To answer these questions, 
we deal with the stiffness matrix of the structure. 

 

 
Figure 12: Number of the iteration steps as the function of the radius  

 
4.3. Stiffness matrices 

 
The stiffness (H) of the cable is 

( )2 2

0 if 0

2 11
if 0

S

S
S

S
dS L rH

S SdL
L S

 =   − += =    − >    

, 

and that of a strut 

( )
2

4 / 1 if 0

0 if 0s

dS r S S
H

dL S

 + <= =
 =

, 

where Ls is the length belonging to the force S, i. e. for a cable 

2 2 2 2 2 2 4

if 0

1 / 2 4 / 4 if 0

r

s

L S
L

r S r S r S S S

 ==
 + − − − − + >

 

and for a strut 
2 24 if 0

if 0
s

r

r S S
L

L S

 − <=
 =

. 
The stiffness matrix of these elements has the following structure 

0 0

0 0

 −
 =
 − 

K K
K

K K
, 

where 
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0
T

r r

S S
H

L L

  = − +   
K ee E . 

 
Stiffness of a triangle gives the relationship between an infinitesimal change in the edge forces 

and that in the edge lengths: 

1 1

2 2

3 3

dQ dL

dQ dL

dQ dL

   
   
   =
   
   
   

H . 

The elements of matrix H are: 

2 if 0

if 0

if 0

0 if 0

i
i i

j

i i
i i ii

j jij
j

i i
i i i

j ji

i i

c
a b

L

c d
a b aQ L LH

L
c d

a a b
L L

a b

 ∂ < − ∂ ∂ ∂ + − < <∂ ∂ ∂= =
∂ ∂ ∂ − < < +∂ ∂ + <

, 

where ( ijδ is the  Kronecker symbol) 

2 24 / 4

ij ii

j i

Lc

L r L

−δ∂
=

∂ −
, 

2 2

4

/ 4

i
ij

ji

j i

LR
R

Ld

L R L

∂
−δ

∂∂
=

∂ −
, 

( )( )
( )

24 2 2
1 1 1 1

3/ 22 2 2 2 2 4 4 42 2 2

j j j j j

j j j j j j j j j

L L L L LR

L L L L L L L L L

− + − +− −
∂

=
∂ + + − − −

.) 

The primary stiffness matrix ( )′K  of a triangular element provides the relationship between the 

nodal displacement increments and the nodal load increments equilibrating the edge force increments 
arising from the nodal displacement increments:  

1 1

1 1
2 3 1 1

2 2
1 3 2 2

2 2
1 2 3 3

3 3

3 3

x x

y yT T

x xT T

y yT T

x x

y y

dq dv

dq dv

dq dv
d

dq dv

dq dv

dq dv

   
   
   
     − −     
      ′= − − =     
     − −          
   
      

e e e e

e e H e e K v

e e e e

, 

that is, a submatrix of ′K  is 

( )
2 2

,
1 1

1
i j

T
ij i i j jH

+ +α+β

+α +α +β +β
α= β=

′ = −∑∑K e e , 

where ie  is the unit vector of the ith edge, and, among the subscripts, the above-mentioned cyclic 

order is valid.   
The secondary (supplementary) stiffness matrix of the triangular element contains the effect of 

the change in the position of the edge forces developed earlier. A submatrix of the main diagonal of 
the supplementary stiffness matrix of the ith edge is  
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( )0 Ti
i i i

i

Q

L
= −K E e e , 

so, the supplementary stiffness matrix of a triangular element is 
0 0 0 0
2 3 3 2

0 0 0 0
3 1 3 1
0 0 0 0
2 1 1 2

 + − − 
 ′′ = − + − 
 − − +  

K K K K

K K K K K

K K K K

. 

The complete (tangent) stiffness matrix of a triangular element is the sum of the two stiffness 
matrices: 

′ ′′= +K K K . 
 

4.4. Equilibrium paths 
 

The optimal arrangement has a D5h symmetry if 1 0.502995r r< = . At r1 the stiffness matrix 

becomes singular. If we force the structure to remain symmetric with respect to the vertical axis then 
we have the eigenvector of the stiffness matrix shown on the right side of Figure 13. The generalized 

coordinate u shows the magnitude of this displacement. If 0u>  the circles form an egg shape, if 

0u<  we have a pumpkin shape. 

 

u

egg

D5h

r1
pumpkin

 
 

Figure 13: Bifurcation at r=0.502995  
 
One might think that this is a stable symmetric bifurcation (standard cusp catastrophe), but this is 

not true because the co-rank of the stiffness matrix is two, and the equilibrium paths together have C5v 
symmetry (see Figure 14). 

 
Figure 14: Equilibrium paths at r=0.502995, integers show the numbers of the negative 

eigenvalues 
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In a suitable cylindrical coordinate system ( ), ,V u ϕ  the 5-jet of the active part of the potential 

energy function can be written as 

2 4 51 1 1
cos5

2 4 5
V u u u=− λ + + ϕ , 

where 1r rλ = − . This shows that, at the bifurcation point, we have the 12th class of the double cusp 

catastrophe [7]. If r is a little bit larger than r1 then egg shapes are stable and the pumpkin shapes are 
unstable equilibrium positions.  

 

 

Figure 15: Egg shape equilibrium path 
 

Following the egg shape equilibrium path (see Figure 15) at 2 0.507989r =  a new strut arises 

but the path remains stable. There is a stable symmetric point of bifurcation (stable cusp catastrophe) 

at 3 0.510398r = . If 3r r>  then the egg shape becomes unstable, but the secondary paths are stable. 

They belong to asymmetric arrangements. Finally, following the egg shape path, an active triangular 
element appears at r4=0.537271. 

 

 

Figure 16: Stable symmetric point of bifurcation at r=0.510398 
 
Similarly, following the pumpkin shape equilibrium path (see Figure 17), at r5=0.513056 two 

new strut elements arise. This shows a nonsmooth change in the eigenvalues of the stiffness matrix, 

v

r

r3

0 0

0

1



 12 

and additionally, the only negative eigenvalue jumps to a positive value. Two active triangular 
elements arise at r6=0.543191, and this type of structure is optimal until the covering. 

 
 

Figure 17: Pumpkin shape equilibrium path  
 
But what happens to the stable equilibrium paths belonging to the asymmetric arrangements? Left 

part of Figure 18 shows the projection of an egg shape equilibrium path and two neighbouring 
pumpkin shape equilibrium paths. The asymmetric shape path meets the egg shape paths at r3 and it 
connects to the pumpkin shape paths at r5. At this bifurcation point the potential energy function is not 
smooth, because in its neighbourhood there are four different topologies of the active elements (and 

what is more the stiffness of a new element is infinite). If 5r r>  then there are seven struts. On the 

connected asymmetric shape path, one (but different) strut disappears, and on the pumpkin shape path, 

both of them disappear if 5r r< . The connected two asymmetric paths do not form a smooth path. 

 

           
 

Figure 18: Connections of the asymmetric equilibrium path to the egg shape paths and pumpkin 
shape paths (left), and the active elements of the asymmetric structure (right) 

 
Figure 19 shows the top view of all the 5 egg, the 5 pumpkin, the 5 asymmetric shape paths (the 

path of D5h symmetry is parallel with the direction of the projection, so it looks a point). These paths 
form the very special double cusp catastrophe point, the five standard cusp catastrophe points and the 
five degenerate bifurcations which do not appear in the elementary catastrophe theory, since the 
potential energy function is not smooth at these bifurcation points. 

r
3

egg pumpkinpumpkin

r
5
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pumpkin

egg

asymmetric

stable

unstable

 
Figure 19: Top view of the equilibrium paths 

 
5. Conclusions 

 
For numerical investigation of problems of packings and coverings with circles, the heating and 

cooling techniques are mechanically well-established algorithms [9, 10]. In packing and covering 
problems, an arrangement is locally optimal, if in this position the associated bar-and-joint structure is 
in equilibrium with a state of self-stress. For investigation of the maximum area problem intermediate 
between packing and covering, we have found that the generalized tensegrity structure model 
introduced in this paper is an effective tool. Here, at every circle arrangement, internal forces arise 
automatically in the associated tensegrity structure, but among them, that arrangement is optimal 
where the internal forces are in equilibrium. The complete (tangent) stiffness matrix of the tensegrity 
structures associated to the circle arrangements helped us to determine the exact values of the circle 
radius where the equilibrium paths bifurcate, that is, where the circle configurations change. 
Catastrophy theory provided additional insight into the stability properties of the circle arrangements. 
Hopefully, the tensegrity structure model presented here can be extended to analyse intermediate 
problems on the sphere as well. 
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