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Abstract — How must 5 equal discs of given radiuse arranged on the unit circle so that the araghef
intersection of the unit circle and the union af thdiscs will be a maximum; and how does the smiuthange
if r varies from the maximum packing radius to the munin covering radius? In this paper, a mechanicaleho
is introduced to analyse this mathematical problémgeneralized tensegrity structure is associateda t
maximum area configuration of the 5 discs, and Bing catastrophe theory, it is pointed out that the
“equilibrium paths” have bifurcations, that is,catrtain values of, the type of the tensegrity structure and so the
type of the disc configuration changes.

1. Introduction

One of the well-known problems in discrete geométryhe following [2]: How mush equal
circles be packed in the unit circle without ovpding so that the radius of the circles will bdage
as possible? Thipacking problem has a dual counterpartdovering: How must the unit circle be
covered byn equal circles without interstices so that the waddf the circles will be as small as
possible? For a givem let r,. andR, denote the maximum radius in the packing probladh the
minimum radius in the covering problem, respectivefFor circles with radiusr such that

lax < <R, recently, Connelly [3] posed a problentermediate between these two: How must

the centres of equal discs of given radiusbe distributed in the unit circle so that, in thet circle,
the area covered by the discs will be a maximumig irftermediate problem is the topic of the
present paper. It should be noted that earliersFEfth [5] raised and Fowler and Tarnai [6] analyse
numerically a similar intermediate problem on thhese.

Connelly [3] considered the caserof 5 as an example (see Figure 1), and wanteddw kinat,
with a continuous increase in how the disc configuration changes in the tréamsifrom the
maximum packing to the minimum covering.

Figure 1: Arrangement of 5 equal circles in a giitle, the uncovered area is in blue

If r is close to the maximum packing radius then tteegdhave only double overlaps, like in
Figure 1. In this case, the maximum area can tErmaied with a formula of Csikds [4]. Connelly [3]
worked out a stress interpretation of Csikés’s fdianand showed how a tensegrity structure can be
associated to the maximum area configuration. Hewefrr is close to the minimum covering radius
then the discs can have some triple overlaps faclwithough Csikés’s formula is still valid, it mot
known how to construct a mechanical model to regrethe maximum area configuration.

In this paper, we will show that, in the case glé& overlaps, the equivalent mechanical model of
the maximum area configuration of discs is a gdize tensegrity structure which, additionally to
struts and cables, contains also triangular elesn@mown as in-plane loaded plate elements in the
finite element techniques). In the numerical inigzdton, stability problems of the configurationnee



found for certain values of If r is plotted against properly selected active védemkthen space curves
analogous to equilibrium paths are obtained whategertain points, bifurcation phenomena are
detected. Catastrophe theory will be used to aaalysse bifurcations, properties of some of which,
however, are beyond the elementary catastropheyt@éh At general points of the “equilibrium
paths”, the numerical calculation was executed i method of dynamic relaxation, while to
determine the bifurcation points, iteration usimg ttangent stiffness matrix of the structure was
applied. The different phenomena and propertied @ shown through the example of the
intermediate problem of 5 discs.

2. Packing of 5 equal circles

As shown first by Graham [8], the largest radiuscioEles which can be arranged in the unit

circle without overlapping is
sin(w /5)
Mo =-—————==0.370191908.
1+ sin(w /5

The arrangement hd&, symmetry. The (local) optimum of the arrangememt be checked by a
bar-and-joint model (see Figure 2). The jointshaf structure are the centres of the circles; twigo
are connected by a bar if the corresponding cirtdash each other. Each joint laying on the circle
with radius *r is supported by a roller in the radial directitfthe arrangement is optimal, then the
structure can be in a state of self-stress wheam thre no bars in tension [9].

Figure 2: Maximum packing of 5 equal circles in thrt circle, and its mechanical model
3. Covering by 5 circles

One might think that the optimal covering has dgosymmetry, where the radius is

R= 1 =0,618033989.
2coq~ /5

The optimal covering can be checked by another imbased on a bipartite graph, where the
vertices of the first kind are the centres of thieles and the vertices of the second kind areptiiets
of the perimeters of the circles in which the witle is only just covered. (In Figure 3, the @as of
the first kind are marked by small circles but teetices of the second kind have no special mark.)

The centre of the unit circle is covered by 5 @sclin such a case this second kind vertex must be
tripled, and suitable bars must be doubled whitegtbars will meet at each vertex (see Figuretdl lef
If a covering is optimal, then the structure canirba state of self-stress where there are noibars
compression [10]. Since in this case some barfnazempression, they ought to be dropped, and the
whole structure can be cooled while we arrive ®dptimal state which is shown in the right side of
Figure 4. As proved by Bezdek [1], the smallestiusdvhen 5 circles can cover the unit circle

isR,;,, =0.609382864. This structure can be in a state of self-stratis all bars in tension.



Figure 4: Model with a tripled vertex (left side)dathe model of the optimal covering (right side)

4. Transition from packing to covering

If r is only a little larger than the maximum packinglits (r,,,) then the discs have double

overlaps (pairwise intersections). In such a ctieemotion of the discs can be described as aifumct
of a parameter, and the derivative of the area vaipect to the motion parameter can be expressed
with a formula of Csikés [4]. The condition, thdtet derivative is equal to zero, determines the
maximum area configuration of the discs. Connelg Iprovided a stress interpretation of Csikés's
formula, and shown how a tensegrity framework cam dssociated to the maximum area
configuration. However, if is close to the minimum covering radius, then tlsegihave some triple
overlaps for which it is not known how to set up eguivalent mechanical model to obtain the
solution to the mathematical problem.

In this paper, we introduce cables to model therlaps of a circle and the unit circle, struts to
model the overlaps of two circles, and triangulanments to model the triple overlaps of the circles
(see Figure 5). Since the types of the symmetryddferent for the optimal packing and covering,

there must be some stability phenomena whitereases from, ,, to R ;..
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Figure 5: The model contains 5 cables (fed), l@sstblue) and 5 triangular elements (green)
4.1. Material laws
The material laws are nonsmooth.
Cables

If a circle intersects the unit circle, the cormsging cable becomes active, and a tensional force
(9 arises in it. The magnitude of this force is

0 ifL<1-—r
s A _

TdL \/4|_2_(1+ L2—r?) /L ifL>1-r

which is equal to the length of the chord betwdentivo points of intersection (see Figure 6).

Figure 6: Intersection of a small circle with thaticircle
Sruts

If a circle intersects the unit circle, the cormsging strut becomes active, and a compression
force () arises in it. The magnitude of this force is

s _ —J4r?—1* ifL<2r

S odL 0 if L>2r

which is equal to the length of the chord betwdentivo points of intersection (see Figure 7).



Figure 7: Intersection of two small circles

Triangular e ements

If three circles have an area in common, the cpording triangular element becomes active,
and tensional forceé i :1,2,3 might arise in its edges. Magnitudes of thesee®rare (see
Figure 8):

B 6A3(L1, L,, L3)
Q=223
L,

Figure 8: The common area of three circles (laft) the geometrical explanation of the forces
(right)

The geometrical explanation of the edge forceshis following: we have considered the
compression force in a strut as the length of thpr@priate chord, but only the length of the
appropriate edge of the Voronoi cell will appeaitirso the magnitude of the edge (tension) foises
the difference of the two lengths.

Angles of the triangle are (we use a cyclic ordeonag the subscripts):

2 2 2
: L. — L
Bi — arccoml
2L L,
Radius of the circle drawn through the verticetheftriangle (for any):
L

~ 2sing.




Figure 9: Explanation of the variables

If R>r then the triangular element is passive (every ddge is zero). IfR<r, then the
auxiliary variables shown in Figure 9 are:

L2—L2, —L?
g =—— 1t i1 C = /r2_|_|?/4’

4L,

b =csing,.,, d =R*—L%/4.

The edge forces:

2c if 0<a —Dh

_|g+d if a-bh<0<a

c—d ifa<0O<a+h’
0 if a+hb <0

4.2. Solution by dynamic relaxation

Using the model shown in Figure 5 and the constguéquations given in Subsection 4.1 with
the help of the dynamic relaxation, one can compane equilibrium position for any given

re(rmax, Rmin). The radius is increased in small steps in thierial. For every we start the
iteration with the final coordinates of the arramgat belonging to the previous valuerofigure 10
shows the coverage of the unit circle as the fonaifr.

Different types of the shapes are shown with différcolours, one example for each type is
shown in Figure 11.






Figure 12 shows that the number of the iterati@pstiincreases very strongly when the type of
the shape changes. One might think that the dynestagation converges to the optimal arrangement
for every fixed radius, but the borders betweensthepe types may change a little if we start with a
large value of, and we decrease it step by step using the salmesvas earlier. Of course we can use
smaller steps, but this method is suitable neithexompute the exact value of the borders norro fi
every equilibrium path (so to determine the typiethe bifurcation points). To answer these question
we deal with the stiffness matrix of the structure.
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Figure 12: Number of the iteration steps as thetfan of the radius
4.3. Siffness matrices

The stiffnessifl) of the cable is

0 if S=0
as 2 2
H=—"= 2(1-LS+r '
a. |t M—s if S>0
L S

and that of a strut
_dS _|a(r/s)f+1 ifS<0
dL, 0 if S=0
whereLsis the length belonging to the for&ei. e. for a cable
L if S=0

r

L, =
|\/1+r2_32/2—\/4rz—82—r252+S4/4 ifS> 0

] :{\/4#—52 if S<0

H

and for a strut

L, if S=0
The stiffness matrix of these elements has thevatlg structure
K = K 0 _K 0
_K 0 K 0
where



HoS
L

T

+EZ,

K. =ee
0 L

T

Stiffness of a triangle gives the relationship testw an infinitesimal change in the edge forces
and that in the edge lengths:

dQ, dL,
dQ,|=H|dL,|.
dQ, dL,
The elements of matri{ are:
oc .
Za_l_j if 0<a —h
":@:%Jr% if aa —b<0<a
U] 3L- J J ’
o|oa _od if 3 <0<a +h
8Lji oL,
0 if a+h <0
where (6” is the Kronecker symbol)
oc - _6ij L
oL, afr—12/4
R oR 5 L

ad oL 4

i J

oL, JrR-L2ra’

4 2 2 \?
OR LilLHl(LJ _<Lifl_ LJ+1) )
T 22 2] 2 2 g4 14 432
oL (280 +200+ AL L~ L))
The primary stiffness matri(<K ’) of a triangular element provides the relationdkgpnveen the

nodal displacement increments and the nodal loaenents equilibrating the edge force increments
arising from the nodal displacement increments:

)

dqu qu
da, dv,
dq g _eZ % é - é dvly
2x 2x
q2y N é N é; 2y
qux el % dv3x
da, dvs,

that is, a submatrix oK’ is
i+j+a+8

2 2
KG :ZZ(_]') ei+aHi+a,j+Be-jr+3’
a=1 =1

where € is the unit vector of théth edge, and, among the subscripts, the above-omeaticyclic
order is valid.

The secondary (supplementary) stiffness matrixhef ttiangular element contains the effect of
the change in the position of the edge forces dgeel earlier. A submatrix of the main diagonal of
the supplementary stiffness matrix of itieedge is



K? :%(E —eielT),

so, the supplementary stiffness matrix of a tridagelement is

KS+K2 K K
K’'=] K?J K24 I K|
—K3 K KK )

The complete (tangent) stiffness matrix of a tridlag element is the sum of the two stiffness

matrices:
K=K'+K ",

4.4, Equilibrium paths

The optimal arrangement hadDg, symmetry if r <r, = 0.50299%. At r; the stiffness matrix

becomes singular. If we force the structure to iamgmmetric with respect to the vertical axis then
we have the eigenvector of the stiffness matrixashon the right side of Figure 13. The generalized
coordinate u shows the magnitude of this displacgenié u> 0 the circles form an egg shape, if

u < 0 we have a pumpkin shape.
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Figure 13: Bifurcation at=0.502995

One might think that this is a stable symmetricitgftion (standard cusp catastrophe), but this is
not true because the co-rank of the stiffness matiiwo, and the equilibrium paths together h@yge
symmetry (see Figure 14).

Figure 14: Equilibrium paths at0.502995, integers show the numbers of the negativ
eigenvalues

10



In a suitable cylindrical coordinate syste(M,u,ap) the 5-jet of the active part of the potential

energy function can be written as
1., 1, 154
V=—=-AUu"+—-U"+-U’coshy,
2 4 5 %
where X\ =r —1,. This shows that, at the bifurcation point, we énétve 1% class of the double cusp

catastrophe [7]. If is a little bit larger tham; then egg shapes are stable and the pumpkin shaepes
unstable equilibrium positions.

ZIN r,=0.537271

~1s r,=0.510398

T £,=0507989

—— 1=0.502995

AN

Figure 15: Egg shape equilibrium path

Following the egg shape equilibrium path (see Fgli) atr, = 0.50798¢ a new strut arises

but the path remains stable. There is a stable sgrimpoint of bifurcation (stable cusp catastrgphe
at r, =0.51039¢ If r > r, then the egg shape becomes unstable, but thedsegquaths are stable.

They belong to asymmetric arrangements. Finalljofiong the egg shape path, an active triangular
element appears B=0.537271.

O~ | 0
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0]
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Figure 16: Stable symmetric point of bifurcation=0.510398

Similarly, following the pumpkin shape equilibriupath (see Figure 17), a4=0.513056 two
new strut elements arise. This shows a nonsmoathgehin the eigenvalues of the stiffness matrix,
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and additionally, the only negative eigenvalue jsmp a positive value. Two active triangular
elements arise at=0.543191, and this type of structure is optimaill tine covering.

j_ R_=0.609383

min

—— 1=0.543191

—— r=0.513056

—— r70.502995
Figure 17: Pumpkin shape equilibrium path

But what happens to the stable equilibrium patherging to the asymmetric arrangements? Left
part of Figure 18 shows the projection of an eggpshequilibrium path and two neighbouring
pumpkin shape equilibrium paths. The asymmetripshzath meets the egg shape paths and it
connects to the pumpkin shape paths.at this bifurcation point the potential energyétion is not
smooth, because in its neighbourhood there aredifi@rent topologies of the active elements (and

what is more the stiffness of a new element isitd). If r > r; then there are seven struts. On the

connected asymmetric shape path, one (but diffestnit disappears, and on the pumpkin shape path,
both of them disappear if < ;. The connected two asymmetric paths do not foemaoth path.

Figure 18: Connections of the asymmetric equilitoripath to the egg shape paths and pumpkin
shape paths (left), and the active elements ahslyenmetric structure (right)

Figure 19 shows the top view of all the 5 egg,3hgumpkin, the 5 asymmetric shape paths (the
path ofDs, symmetry is parallel with the direction of the jetion, so it looks a point). These paths
form the very special double cusp catastrophe pthietfive standard cusp catastrophe points and the
five degenerate bifurcations which do not appeathi elementary catastrophe theory, since the
potential energy function is not smooth at thegertation points.
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Figure 19: Top view of the equilibrium paths
5. Conclusions

For numerical investigation of problems of packimgs coverings with circles, the heating and
cooling techniques are mechanically well-estabtishégorithms [9, 10]. In packing and covering
problems, an arrangement is locally optimal, ithis position the associated bar-and-joint strectsr
in equilibrium with a state of self-stress. Forastigation of the maximum area problem intermediate
between packing and covering, we have found that gbneralized tensegrity structure model
introduced in this paper is an effective tool. Hexeevery circle arrangement, internal forcesearis
automatically in the associated tensegrity stractinut among them, that arrangement is optimal
where the internal forces are in equilibrium. Tloenplete (tangent) stiffness matrix of the tensggrit
structures associated to the circle arrangemempedels to determine the exact values of the circle
radius where the equilibrium paths bifurcate, tig@t where the circle configurations change.
Catastrophy theory provided additional insight itite stability properties of the circle arrangersent
Hopefully, the tensegrity structure model preserttede can be extended to analyse intermediate
problems on the sphere as well.
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