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Summary

This paper is concerned with geometrical and algebraic representation bfdadet Cartesian
tensors. As fourth-order tensors are four-dimensional objects, it is difficukualize them. A
possible way of representation proposed here is based on an orthogonal projection of a four-
dimensional cube into a planar octagon. Another way of geometrical visualimpossible by
means of a quartic form in the three-dimensional space, though this mapping does notprovide
one-to-one correspondence. Different kinds of symmetry and the existence of the areealso
investigated, and it is established that the stiffness and compliance terngenei@ Hooke's law
are not inverses of each other. We show that a fourth-order tensor can be reprgsai3e8 b
matrix whose entries are 3x3 matrices, and also by a 9x9 matrix. The pagpearsses some old
facts and new results.

Keywords: Fourth-order tensor, geometric representation, algebraic represgndatble
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1. Introduction

Fourth-order tensors were first introduced by Voigt [1], who called them ‘Bitensalong with
his term ‘Tensortripel’ for second-order tensors. As tensors have becoméaimiporvarious fields
of mathematical and scientific applications in the last few decades inclcahmgutational
mechanics [2], the general and more consistent termtlebrder tensor’ has exchanged the old
ones. Second-order tensors are in everyday use in the form of common matricesrdéri
tensors are less often used [3], a notable exception is the Levi-Civita temsth-érder tensors
again have an importance in solid mechanics, e.g. in the definition of the stiffnessrgiicicce
properties of the general form of Hooke's law.

The two major difficulties regarding the handling of fourth-order tenserthargeometric and
algebraic representations. Elements ohidrorder object can be placed at the nodes of an
dimensional grid forming an-dimensional cube. The visualization above the third order becomes
rather complicated. On the other hand, algebraic descriptions of operations orohiginéensors
involve (multiple) summations making practical calculations difficult to followthis paper we
discuss and propose representations of fourth-order tensors for better ajiplivatbilin geometric
and algebraic aspect.

Furthermore, an important field in tensor algebra is related to the definitiba wivierse of a
tensor. In solid mechanics the relationship between the stiffness and complnsacs ¢ general
Hooke's law bears importance. In numerical computations the said tensors areaasess
represented by 6x6 matrices, the stiffness and compliance matriceska $llaw, and operations
are performed by using matrix algebra. It makes room for possible confusionrskimvatrices
and inverse tensors, e.g. in [4]. We discuss the definition of the identity tensor ameetise |
tensor with respect to the symmetry properties of the tensor.



2. Representations

A vector is a series of elements. A second-order tensor, which is represeatathti, can be
regarded as a series of vectors, or in other words a vector composed of elemgnisdbers
themselves. By generalization a third-order tensor is regarded a®aoauposed of elements that
are second-order tensors, and a fourth-order tensor as a vector of third-order tetsolast
index is chosen to refer to the elements of the vector, the notation may go as
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Fig. 1. Representation of a fourth-order tensor in the plane. Only the inditas 81 elements are shown.

The orthogonal projection of the four-dimensional grid of size 3 into a planar octagosibjua
in Fig. 1 where each layer represents a third-order tensor plotted in diffeleats. Alternatively,
in the case of fourth-order tensors, the four-dimensional set can be viewed adi®énsional
layers of size 3x3, and correspondingly the notation goes as

Aijkl = (Aij X (2)
In this case the layers of the tensor can be arranged in a planar orthogonal gaBsBsas

T1111 1211 1311 [ 1112 1212 1312[ 1113 1213 1R
2111 2211 231 2112 2212 23012| 2113 2213 23
13111 3211 331 3112 3212 33012| 3113 3213 33

2

(1121 1221 1321 [ 1122 1222 13%2[1123 1223 132
A=||2121 2221 232 22 2222 232 2123 2223 232f
3121 3221 3321 |3122 3222 332 3123 3223 33pf

1131 1231 1331 [ 1132 1232 1382 1133 1233 1B
2131 2231 233 2132 2232 2332 2133 2233 23
3131 3231 333 3132 3232 33p2| 3133 332 3333

where only the indices are displayed. Note thatg3)pt a 9x9 matrix but an algebraic
representation that reflects the structure of theth-order tensor. In any layer the last two iedic
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do not vary. A representation can be made by censigl layers given by the first two indices
instead [2]. In order to create a matrix repredeiaof a tensor that is also applicable to the
purposes of algebraic operations, we define a mappiat converts the tensor into a 9x9 matrix as
follows. Pairs of indices are mapped to numbeis 9 $0 that different pairs correspond to different
numbers:

®:(i,j) - n ()={(19423 (L3¢ 206 2RG 29 31534 Y3 n=1..0 (@)

The 9 pairs formed by the first and second indafebe tensor correspond to the rows of the matrix
and are listed in an arbitrary order. The pairthofl and fourth indices are listed in the same=ord
referring to the columns of the matrix in a simikeay. (One particular mapping sequence was
proposed by Nadeau and Ferrari [6].)

Operations on fourth-order tensors provide largerety than those on second-order ones. Addition
of tensors is commutative and composed of addidmsdividual elements. Multiplication
operations can be various, e.g. double and quaslngpitractions are defined as
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Quadruple contraction produces a scalar while doabhtraction yields another fourth-order

tensor. However, to calculate the double contraciaouble summation of pairs of elements has to
be performed. The summation goes by the last tdicés of the first tensor, which correspond to
the first two indices of the second tensor. Comsiidea matrix representation that maps the two
pairs of indices by the same rule given in Eqi@@,double contraction of fourth-order tensors can
be replaced by single multiplication of matricesiroother words, single contraction of second-
order tensors of dimension 9.

Let us define a second-order tensor of variableX ax Ox wherex = [x1 X, x3] and 0 denotes
the tensorial product. One can vieXvas a 3x3 matrix obtained by the diadic produacteaftor x
with itself. Now let us create the ‘quadratic’ form

Q=X:A:X (7

of the fourth-order tensak, which is indeed quartic with respectxa It is known that symmetric
second-order tensors can be visualized by thenrtia form yielding an ellipsoid in the three-
dimensional space. The quartic form (7) of the iwarder tensor can be applied in a similar
manner. Now the equatio =1 displays a fourth-order surface in the Cartes&mlm'n(&, X5, x3) :
which is not always elliptic. Moreover, its polynahform contains fifteen terms and thus the
mapping of the fourth-order tensor onto the qudaim does not provide a one-to-one
correspondence, except for a completely symmetnsdr having 15 different elements. However,
it is in direct relationship with the propertiestbé tensor as shown later in this paper.

3. Group of fourth-order tensors in 3-dimensional pace

Let us consider the sét of all fourth-order tensors of dimension 3. Theynfi a group with respect
to double contraction if the following requiremeatg satisfied:

1. (closurg A:BOG forall A,BOG,

2. (associativity (A:B):C =A:(B:C) forall A,B,COG,

3. (identity elementthere exist an identity elemehflG so thatA:l =1 ‘A =A for all
elementsA OG,

4. (inversg for each elemenf G there exists an inverse elem@ilG so that
A:B=B:A=I.



The requirement of closure is automatically satsty definition. Furthermore, it can be shown
that the rule of associativity is also satisfieddt) fourth-order tensors. However, due to the
complexity of symmetry properties, the fourth-orakantity tensor is not symmetric thus it is worth
considering the identity tensor, its transpose,itmglymmetric part as well:
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where o ande, denote the Kronecker-delta and the unit vectalinectiont, respectively. The
transpose ofSa tensor is definedias A" if b, =g, . The entries of tensoisand ™ are only 0
and 1 whilel > has entries 2 as well.

Our analysis has shown that the transpose tensiatharsymmetric part may satisfy the third
requirement for certain types of fourth-order teas&urthermore, special tensors can be found that
satisfy the equations in the fourth requiremenhwitand|™ but are not unique solutions and hence
cannot be regarded as inverse tensors. We haweditie set of fourth-order tensors into subsets
with respect to symmetry in order to assess theiregents individually. These subsets are

referred to as ‘types’ in the following. We considgmmetry by the equality of certain elements,
and a list of types shown in Table 1 has been egeat

Table 1. Symmetry types of fourth-order tensors displaying indifasing to identical elements, the
maximum number of different elementg @\ and the notation.

Symmetry properties Nmax | Notation
all permutations oifkl 15 15

Akl = Ayij = Ajikl = jik 21 21

aiji = Ajiki = Ajjik = Ak 36 36

Akl = djilk 45 45a

dijkl = Akiij 45 45b

8ijk = ikl o4 o4a

ik = Ajjik 54 54b
none 81 81

Though some of the types are not subsets of oties, @ne can generally say that the maximum
number of different elements is less for highee/pf symmetry and such tensors satisfy criteria of
some of the lower types as well. Surprisingly, ithentity tensorl and its transposE’ satisfy only
criteria 45a and 45b while the symmetric plartsatisfies all except 15. The properties are
summarized in Table 2.

Table 2. Fulfilment of symmetry definitions (symbol x) with respedffereht types of tensors (columns)
and type criteria (rows). Note that some tensor types comply with seyeralriteria.

Type|ATS AZL AT AT ATSD p5%E A5 R
15
21
36
45a
45b
54a
54b
81

X|X|X|X|Xx|X]|X]|X

XX |x|X|x]|X|X
X|X|x|X]|x]|X
X

X
X
X
X|X|X|X|x|[X|X




Though the associativity criterion is satisfied &irfourth-order tensors, the double contraction
does not always yield output of the same symmegpg.tSymmetry is preserved in the case of types
36, 45a, 54a, 54b, and 81, but is reduced in the ochtypes 15, 21, and 45b, i.e. the requiremient o
closure is satisfied only in the former case.

Double contraction of fourth-order tensors with itentity tensor, its transpose, and its symmetric
part yields various results depending on the symmgpe. In the case of higher symmetry types
(15, 21, 36) the third criterion of group definitics satisfied for the identity tensor as well asits
transpose and symmetric part. On the other harttieisase of types 54a and 54b double
contraction withl ® violates the criterion since the two contractighe different results, while in
the case of types 45a, 45b, and 81 double cordrafzdils with bothl™ and1°. The results are
summarized in Table 3.

Table 3. Fulfilment of the criterion of identity element (symbol ) vaspect to symmetry types of tensors
coupled with the identity tensor, its transpose and its symmetric part.

15| 21| 36| 45a45b| 54a|54b| 81
| X X X X X X X X
R X X X X
1° [ x [ x | x

The definition of the inverse element in the fowtherion means that all 81 elements of the
inverse tensoB have to be chosen so that the two equations (ortaé right inverse and one for
the left inverse) are satisfied. According to tipem@tion of double contraction defined by Eq.(5)
two inhomogeneous systems of linear equationsaaineulated, both comprised of 81 equations
with 81 variables. The systems of equations yigldwe solutions if the ranks of the coefficient
matrix and of the extended matrix are both 81. ifikierse tensor exists if the left inverse and the
right inverse obtained from the two systems of équa are identical according to the fourth
requirement of the group definition.

We have examined all symmetry types with respetit@écexistence of the inverse tenBosuch

that A:B =B :A =1 according to the fourth requirement. We found thdy tensors of types 45a,
45b, and 81 comply with this requirement. Moreotemsors of type 45a satisfy the equations also
if the identity tensor is replaced by its transposés symmetric part, and the symmetry properties
are preserved as well while in this case tensotgpals 45b and 81 yield different solutions for the
left inverse and the right inverse.

For all other types both the coefficient matrix @he extended matrix have rank deficiency, thus a
unique inverse is not possible to obtain. In theeaaf types 54a and 54b the system of equation
yields no solution for either the left inverse e tright inverse or both.

Even though unique solution is not possible, tlyhdéi symmetry types (15, 21, 36) can yield
solutions if the symmetric patt of the identity tensor is used. Now the rankshef ¢oefficient

matrix and the extended matrix are equally 54 aireinfinite set of solutions of 27 parameters is
obtained. They can be taken arbitrarily, howevesyitable choice of parameters yield a solution of
high symmetry. They are of types 21, 21, and 3@dnsor types 15, 21, and 36, respectively. These
special left and right tensors are identical irtlalee cases. The results are summarized in Table 4

Table 4. Fulfilment of the criterion of inverse element (symbol x) ihect to symmetry types of tensors
coupled with the identity tensor, its transpose and its symmetric garhas ! denote non-unique solutions
of equations.

15| 21| 36| 45a45b|54a|54b| 81
| X X X
|7 X
ST v Jr |x

To conclude, the set of all fourth-order tensorsidbform a group with double contraction because
the third and the fourth requirements are not fsadigor all tensors. Associativity is satisfied fall
types but closure only for certain ones. The tygiesw large variety with respect to the criteria
regarding the identity element and the inverse el@nThe result are shown in Table 5. One can



conclude that the requirements of group definitan be satisfied only in the case of types 45a and
81 for the identity tensor . On the other hand, it is interesting to obsehat in the case of higher
symmetry types the equations with the symmetrit giathe identity tensor in the fourth criterion
lead neither to contradiction nor to unique sohsichence inverse tensor does not exist. In tisis ca
all tensors involved exhibit rank deficiency in ithmatrix representations defined by Eq.(4).

Table 5. Fulfilment of group definition (symbol x) with respect to symrgies; symbols ! denote non-
unigue solution of equations; in the last two rows the relevant tensors araydidpl

15 21 36 45a 45h 54a 54pb 81
1 X X X X X
2 X X X X X X X X
SIS rImis|ramis |l | 1Tl
4 | ! ! [ 1718 | | I

4. Hooke tensors

The stiffness and compliance tensors of generakefsdaw are fourth-order tensors, which are
usually given in a form of a 6x6 reduced matrixeThlationship between the stress and strain
tensors defines the mapping between the fourthrdetsors and the reduced matrices [7]. The
stiffness and compliance tensors comply with symyngpe 21. The most important consequence
is that the two tensors are not inverses of eduobrof(Note that the reduced matrices are indeed in
inverse relationship according to matrix inversérufgon.)

Linearly elastic materials are classified with o the symmetry of their atomic (crystal)
structure. The symmetry systems are: triclinic, owbimic, orthorhombic, trigonal, hexagonal,
tetragonal, cubic, and isotropic; each class isattarized by planes and rotational axes of
symmetry, see e.g. [1]. The symmetry propertighefcrystal structure is reflected in the symmetry
properties and in the number of different elemenhtbe tensor.

Let us consider the quartic form defined in Eqf¢r)the crystal groups above. Our calculations
show that the surface in the Cartesian sys(mlmxz, x3) exhibits the same symmetry properties as
the crystal system. For example, the trigonal sydtas a threefold axis of rotation (and in certain
cases also another three twofold axes of rotati@perpendicular direction to the threefold axis)
just as well as its surface representation hash Saterial is the corundum (Abs) where the
elements of the 6x6 reduced stiffness matrixcgre497,5 GPag1,=162,7 GPa¢;5=115,5 GPa,
C14=22,5 GPag33=503,3 GPag44=147,4 GPa, see [8]. The quartic surface showngnZHs

497,5¢ + 497,5% + 50L& - 9€x+ 998 X+ 8206+ 820/p%+ 2%0x% ¥ (11)

5. Conclusions

We have shown that a fourth-order tensor can helrzed as an orthogonal projection of the four-
dimensional cube and can be represented as a mdiinise elements are matrices. It is also
possible to create a mapping that converts theldadntraction of fourth-order tensors of
dimension 3 into a single contraction of secondeotdnsors of dimension 9 reducing
computational difficulties. Different types of fabrorder tensors can be defined with respect to
symmetry properties. We have found that the satl@énsors coupled with double contraction does
not form a group but the subset of general non-sgmoal tensors and the subset of a special
symmetry type do. Tensors of the symmetry type whépresents the Hooke tensors of solid
mechanics do not form a group and have no inverssot either. It means that the stiffness and
compliance tensors are not inverses of each athgpiie of the fact that the stiffness and
compliance tensors applied in succession transfoenstrain tensor into the stress tensor and back
again. The special behaviour is also exhibitedhéraink deficiency of the matrix representation of
the tensors.



0.218

0218

0217

F o216

[ 0215

F —0214

i0.213

0.212

0.211

Fig. 2. Representation of the trigonal stiffness tensor of corundy@sjAh the Cartesian system; (%,xs)
by its quartic surface. Colours indicate distance from the origin.
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