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Summary 
This paper is concerned with geometrical and algebraic representation of fourth-order Cartesian 
tensors. As fourth-order tensors are four-dimensional objects, it is difficult to visualize them. A 
possible way of representation proposed here is based on an orthogonal projection of a four-
dimensional cube into a planar octagon. Another way of geometrical visualization is possible by 
means of a quartic form in the three-dimensional space, though this mapping does not provide a 
one-to-one correspondence. Different kinds of symmetry and the existence of the inverse are also 
investigated, and it is established that the stiffness and compliance tensors of general Hooke's law 
are not inverses of each other. We show that a fourth-order tensor can be represented by a 3×3 
matrix whose entries are 3×3 matrices, and also by a 9×9 matrix. The paper summarises some old 
facts and new results. 
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1. Introduction 
Fourth-order tensors were first introduced by Voigt [1], who called them ‘Bitensoren’ along with 
his term ‘Tensortripel’ for second-order tensors. As tensors have become important in various fields 
of mathematical and scientific applications in the last few decades including computational 
mechanics [2], the general and more consistent term of ‘nth-order tensor’ has exchanged the old 
ones. Second-order tensors are in everyday use in the form of common matrices. Third-order 
tensors are less often used [3], a notable exception is the Levi-Civita tensor. Fourth-order tensors 
again have an importance in solid mechanics, e.g. in the definition of the stiffness and compliance 
properties of the general form of Hooke's law. 

The two major difficulties regarding the handling of fourth-order tensors are the geometric and 
algebraic representations. Elements of an nth-order object can be placed at the nodes of an n-
dimensional grid forming an n-dimensional cube. The visualization above the third order becomes 
rather complicated. On the other hand, algebraic descriptions of operations on higher-order tensors 
involve (multiple) summations making practical calculations difficult to follow. In this paper we 
discuss and propose representations of fourth-order tensors for better applicability both in geometric 
and algebraic aspect. 

Furthermore, an important field in tensor algebra is related to the definition of the inverse of a 
tensor. In solid mechanics the relationship between the stiffness and compliance tensors of general 
Hooke's law bears importance. In numerical computations the said tensors are in most cases 
represented by 6×6 matrices, the stiffness and compliance matrices of Hooke's law, and operations 
are performed by using matrix algebra. It makes room for possible confusion of inverse matrices 
and inverse tensors, e.g. in [4]. We discuss the definition of the identity tensor and the inverse 
tensor with respect to the symmetry properties of the tensor. 



2. Representations 
A vector is a series of elements. A second-order tensor, which is represented by a matrix, can be 
regarded as a series of vectors, or in other words a vector composed of elements being vectors 
themselves. By generalization a third-order tensor is regarded as a vector composed of elements that 
are second-order tensors, and a fourth-order tensor as a vector of third-order tensors. If the last 
index is chosen to refer to the elements of the vector, the notation may go as 

, ( ) , ( ) , ( )i ij i j ijk ij k ijkl ijk l= = =A A A A A A A  (1) 
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Fig. 1. Representation of a fourth-order tensor in the plane. Only the indices of the 81 elements are shown. 

The orthogonal projection of the four-dimensional grid of size 3 into a planar octagon [5] is shown 
in Fig. 1 where each layer represents a third-order tensor plotted in different colours. Alternatively, 
in the case of fourth-order tensors, the four-dimensional set can be viewed as 9 two-dimensional 
layers of size 3×3, and correspondingly the notation goes as 

( )ijkl ij kl=A A  (2) 

In this case the layers of the tensor can be arranged in a planar orthogonal grid of size 3×3 as 
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where only the indices are displayed. Note that (3) is not a 9×9 matrix but an algebraic 
representation that reflects the structure of the fourth-order tensor. In any layer the last two indices 



do not vary. A representation can be made by considering layers given by the first two indices 
instead [2]. In order to create a matrix representation of a tensor that is also applicable to the 
purposes of algebraic operations, we define a mapping that converts the tensor into a 9×9 matrix as 
follows. Pairs of indices are mapped to numbers 1 to 9 so that different pairs correspond to different 
numbers: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }: , , , 1,1 ; 1,2 ; 1,3 ; 2,1 ; 2,2 ; 2,3 ; 3,1 ; 3,2 ; 3,3 , 1, ,9i j n i j nΦ → = = …  (4) 

The 9 pairs formed by the first and second indices of the tensor correspond to the rows of the matrix 
and are listed in an arbitrary order. The pairs of third and fourth indices are listed in the same order 
referring to the columns of the matrix in a similar way. (One particular mapping sequence was 
proposed by Nadeau and Ferrari [6].) 

Operations on fourth-order tensors provide larger variety than those on second-order ones. Addition 
of tensors is commutative and composed of additions of individual elements. Multiplication 
operations can be various, e.g. double and quadruple contractions are defined as 
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Quadruple contraction produces a scalar while double contraction yields another fourth-order 
tensor. However, to calculate the double contraction a double summation of pairs of elements has to 
be performed. The summation goes by the last two indices of the first tensor, which correspond to 
the first two indices of the second tensor. Considering a matrix representation that maps the two 
pairs of indices by the same rule given in Eq.(4), the double contraction of fourth-order tensors can 
be replaced by single multiplication of matrices, or in other words, single contraction of second-
order tensors of dimension 9. 

Let us define a second-order tensor of variables as = ⊗X x x  where [ ]1 2 3, ,x x x=x  and ⊗  denotes 
the tensorial product. One can view X  as a 3×3 matrix obtained by the diadic product of vector x  
with itself. Now let us create the ‘quadratic’ form 

: :Q = X A X  (7) 

of the fourth-order tensor A, which is indeed quartic with respect to ix . It is known that symmetric 
second-order tensors can be visualized by their quadratic form yielding an ellipsoid in the three-
dimensional space. The quartic form (7) of the fourth-order tensor can be applied in a similar 
manner. Now the equation 1Q =  displays a fourth-order surface in the Cartesian system ( )1 2 3, ,x x x , 
which is not always elliptic. Moreover, its polynomial form contains fifteen terms and thus the 
mapping of the fourth-order tensor onto the quartic form does not provide a one-to-one 
correspondence, except for a completely symmetric tensor having 15 different elements. However, 
it is in direct relationship with the properties of the tensor as shown later in this paper. 

3. Group of fourth-order tensors in 3-dimensional space 
Let us consider the set G of all fourth-order tensors of dimension 3. They form a group with respect 
to double contraction if the following requirements are satisfied: 

1. (closure) : G∈A B  for all , G∈A B , 

2. (associativity) ( ) ( ): : : :=A B C A B C  for all , , G∈A B C , 

3. (identity element) there exist an identity element G∈I  so that : := =A I I A A  for all 
elements G∈A , 

4. (inverse) for each element G∈A  there exists an inverse element G∈B  so that 
: := =A B B A I . 



The requirement of closure is automatically satisfied by definition. Furthermore, it can be shown 
that the rule of associativity is also satisfied for all fourth-order tensors. However, due to the 
complexity of symmetry properties, the fourth-order identity tensor is not symmetric thus it is worth 
considering the identity tensor, its transpose, and its symmetric part as well: 

ik jl i j k l
ijkl

δ δ= ⊗ ⊗ ⊗∑I e e e e (8) 

T
il jk i j k l

ijkl

δ δ= ⊗ ⊗ ⊗∑I e e e e (9) 

( )1

2
S T= +I I I  (10) 

where δ  and te  denote the Kronecker-delta and the unit vector in direction t, respectively. The 
transpose of a tensor is defined as T=B A  if ijlk ijklb a= . The entries of tensors I  and TI  are only 0 
and 1 while SI  has entries ½ as well. 

Our analysis has shown that the transpose tensor and the symmetric part may satisfy the third 
requirement for certain types of fourth-order tensors. Furthermore, special tensors can be found that 
satisfy the equations in the fourth requirement with I  and TI  but are not unique solutions and hence 
cannot be regarded as inverse tensors. We have divided the set of fourth-order tensors into subsets 
with respect to symmetry in order to assess the requirements individually. These subsets are 
referred to as ‘types’ in the following. We consider symmetry by the equality of certain elements, 
and a list of types shown in Table 1 has been created. 

Table 1. Symmetry types of fourth-order tensors displaying indices referring to identical elements, the 
maximum number of different elements (Nmax), and the notation. 

Symmetry properties Nmax Notation 
all permutations of ijkl  15 15 
aijkl = aklij = ajikl = aijlk 21 21 
aijkl = ajikl = aijlk = ajilk 36 36 
aijkl = ajilk 45 45a 
aijkl = aklij 45 45b 
aijkl = ajikl 54 54a 
aijkl = aijlk 54 54b 
none 81 81 

Though some of the types are not subsets of other ones, one can generally say that the maximum 
number of different elements is less for higher types of symmetry and such tensors satisfy criteria of 
some of the lower types as well. Surprisingly, the identity tensor I  and its transpose TI  satisfy only 
criteria 45a and 45b while the symmetric part SI  satisfies all except 15. The properties are 
summarized in Table 2. 

Table 2. Fulfilment of symmetry definitions (symbol ×) with respect to different types of tensors (columns) 
and type criteria (rows). Note that some tensor types comply with several type criteria. 

Type A15 A21 A36 A45a A45b A54a A54b I  IT IS 
15 ×          
21 × ×        × 
36 × × ×       × 
45a × × × ×    × × × 
45b × × ×  ×   × × × 
54a × × ×   ×    × 
54b × × ×    ×   × 
81 × × × × × × × × × × 



Though the associativity criterion is satisfied for all fourth-order tensors, the double contraction 
does not always yield output of the same symmetry type. Symmetry is preserved in the case of types 
36, 45a, 54a, 54b, and 81, but is reduced in the case of types 15, 21, and 45b, i.e. the requirement of 
closure is satisfied only in the former case. 

Double contraction of fourth-order tensors with the identity tensor, its transpose, and its symmetric 
part yields various results depending on the symmetry type. In the case of higher symmetry types 
(15, 21, 36) the third criterion of group definition is satisfied for the identity tensor as well as for its 
transpose and symmetric part. On the other hand, in the case of types 54a and 54b double 
contraction with SI  violates the criterion since the two contractions give different results, while in 
the case of types 45a, 45b, and 81 double contraction fails with both TI  and SI . The results are 
summarized in Table 3. 

Table 3. Fulfilment of the criterion of identity element (symbol ×) with respect to symmetry types of tensors 
coupled with the identity tensor, its transpose and its symmetric part. 

 15 21 36 45a 45b 54a 54b 81 
I  × × × × × × × × 
IT × × ×   × ×  
IS × × ×      

The definition of the inverse element in the fourth criterion means that all 81 elements of the 
inverse tensor B have to be chosen so that the two equations (one for the right inverse and one for 
the left inverse) are satisfied. According to the operation of double contraction defined by Eq.(5) 
two inhomogeneous systems of linear equations are formulated, both comprised of 81 equations 
with 81 variables. The systems of equations yield unique solutions if the ranks of the coefficient 
matrix and of the extended matrix are both 81. The inverse tensor exists if the left inverse and the 
right inverse obtained from the two systems of equations are identical according to the fourth 
requirement of the group definition. 

We have examined all symmetry types with respect to the existence of the inverse tensor B such 
that : := =A B B A I  according to the fourth requirement. We found that only tensors of types 45a, 
45b, and 81 comply with this requirement. Moreover, tensors of type 45a satisfy the equations also 
if the identity tensor is replaced by its transpose or its symmetric part, and the symmetry properties 
are preserved as well while in this case tensors of types 45b and 81 yield different solutions for the 
left inverse and the right inverse. 

For all other types both the coefficient matrix and the extended matrix have rank deficiency, thus a 
unique inverse is not possible to obtain. In the case of types 54a and 54b the system of equation 
yields no solution for either the left inverse or the right inverse or both. 

Even though unique solution is not possible, the higher symmetry types (15, 21, 36) can yield 
solutions if the symmetric part SI  of the identity tensor is used. Now the ranks of the coefficient 
matrix and the extended matrix are equally 54, i.e. an infinite set of solutions of 27 parameters is 
obtained. They can be taken arbitrarily, however, a suitable choice of parameters yield a solution of 
high symmetry. They are of types 21, 21, and 36 for tensor types 15, 21, and 36, respectively. These 
special left and right tensors are identical in all three cases. The results are summarized in Table 4. 

Table 4. Fulfilment of the criterion of inverse element (symbol ×) with respect to symmetry types of tensors 
coupled with the identity tensor, its transpose and its symmetric part; symbols ! denote non-unique solutions 

of equations. 

 15 21 36 45a 45b 54a 54b 81 
I     × ×   × 
IT    ×     
IS ! ! ! ×     

To conclude, the set of all fourth-order tensors do not form a group with double contraction because 
the third and the fourth requirements are not satisfied for all tensors. Associativity is satisfied for all 
types but closure only for certain ones. The types show large variety with respect to the criteria 
regarding the identity element and the inverse element. The result are shown in Table 5. One can 



conclude that the requirements of group definition can be satisfied only in the case of types 45a and 
81 for the identity tensor I . On the other hand, it is interesting to observe that in the case of higher 
symmetry types the equations with the symmetric part of the identity tensor in the fourth criterion 
lead neither to contradiction nor to unique solutions, hence inverse tensor does not exist. In this case 
all tensors involved exhibit rank deficiency in their matrix representations defined by Eq.(4). 

Table 5. Fulfilment of group definition (symbol ×) with respect to symmetry types; symbols ! denote non-
unique solution of equations; in the last two rows the relevant tensors are displayed. 

 15 21 36 45a 45b 54a 54b 81 
1   × ×  × × × 
2 × × × × × × × × 
3 I TI SI  I TI SI  I TI SI  I  I  I TI  I TI  I  
4 ! ! ! I TI SI  I    I  

4. Hooke tensors 
The stiffness and compliance tensors of general Hooke’s law are fourth-order tensors, which are 
usually given in a form of a 6×6 reduced matrix. The relationship between the stress and strain 
tensors defines the mapping between the fourth-order tensors and the reduced matrices [7]. The 
stiffness and compliance tensors comply with symmetry type 21. The most important consequence 
is that the two tensors are not inverses of each other. (Note that the reduced matrices are indeed in 
inverse relationship according to matrix inverse definition.) 

Linearly elastic materials are classified with respect to the symmetry of their atomic (crystal) 
structure. The symmetry systems are: triclinic, monoclinic, orthorhombic, trigonal, hexagonal, 
tetragonal, cubic, and isotropic; each class is characterized by planes and rotational axes of 
symmetry, see e.g. [1]. The symmetry properties of the crystal structure is reflected in the symmetry 
properties and in the number of different elements of the tensor. 

Let us consider the quartic form defined in Eq.(7) for the crystal groups above. Our calculations 
show that the surface in the Cartesian system ( )1 2 3, ,x x x  exhibits the same symmetry properties as 
the crystal system. For example, the trigonal system has a threefold axis of rotation (and in certain 
cases also another three twofold axes of rotation in a perpendicular direction to the threefold axis) 
just as well as its surface representation has. Such material is the corundum (Al2O3) where the 
elements of the 6×6 reduced stiffness matrix are c11=497,5 GPa, c12=162,7 GPa, c13=115,5 GPa, 
c14=22,5 GPa, c33=503,3 GPa, c44=147,4 GPa, see [8]. The quartic surface shown in Fig. 2 is 

3 4 4 3 2 2 2 2 2 2 2
1 2 3 2 3 1 2 1 3 2 3 1 2 3497,5 497,5 501 90 995 820,6 820,6 270 1x x x x x x x x x x x x x x+ + − + + + + =  (11) 

5. Conclusions 
We have shown that a fourth-order tensor can be visualized as an orthogonal projection of the four-
dimensional cube and can be represented as a matrix whose elements are matrices. It is also 
possible to create a mapping that converts the double contraction of fourth-order tensors of 
dimension 3 into a single contraction of second-order tensors of dimension 9 reducing 
computational difficulties. Different types of fourth-order tensors can be defined with respect to 
symmetry properties. We have found that the set of all tensors coupled with double contraction does 
not form a group but the subset of general non-symmetrical tensors and the subset of a special 
symmetry type do. Tensors of the symmetry type which represents the Hooke tensors of solid 
mechanics do not form a group and have no inverse tensor either. It means that the stiffness and 
compliance tensors are not inverses of each other in spite of the fact that the stiffness and 
compliance tensors applied in succession transform the strain tensor into the stress tensor and back 
again. The special behaviour is also exhibited in the rank deficiency of the matrix representation of 
the tensors. 



 
Fig. 2. Representation of the trigonal stiffness tensor of corundum (Al2O3) in the Cartesian system (x1,x2,x3) 

by its quartic surface. Colours indicate distance from the origin. 
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