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a b s t r a c t

This paper traces a way of generalization of the classical truss theory: in addition to the kinematic con-
straint expressing the distance between two nodes connected by a bar element, other similar constraints
involving three and four nodes are introduced. Derived from energy principles, a general tangent stiffness
formulation is given. Possible mechanical interpretations as well as problems of pre-stressing are also
discussed.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Tangent stiffness formulation of pin-jointed structures has been
studied more or less directly in several papers in the recent years.
Although there are various approaches to the interpretation of a
tangent stiffness matrix, it is common to distinguish three of its
components due to (a) material stiffness (Guest, 2006), (b) the mod-
ifying effect of member forces and (c) geometrical stiffness (e.g.
Przemieniecki, 1968). However, care must be taken with these
denominations, as ‘geometrical stiffness’, e.g. in Schenk (2006) is
applied for the sum of members (b) and (c), while Tarnai and Szabó
(2002) use ‘complementary stiffness’ for the negative of members
(b) and (c) together. Guest (2006) refers to members (a) and (b)
together as ‘modified material stiffness’ and calls the matrix corre-
sponding to member (c) the ‘stress matrix’. The term stress is also
of doubtful usage anyway: in the theory of mathematical rigidity
(concerned only with problems of prestress stability without re-
spect to material properties, i.e. members (b) and (c) of the tangent
stiffness only), ‘stress’ is applied for a member force over member
length (see e.g. Connelly and Whiteley, 1996), while other sources
use tension coefficient (e.g. Southwell, 1920) or force density (e.g.
Schek, 1974) with the same meaning.

As was emphasized in Guest (2006), different understanding of
the same tangent stiffness is mainly due to different approaches of
each field of science, as well as to the way of derivation of the
tangent stiffness. The main objective of this paper is to provide a
potential energy-based formulation of the tangent stiffness and

extended definition of ‘stress’ for a generalized truss model using
the Hellinger–Reissner principle (Washizu, 1982). The general fea-
ture of our model comes from the introduction of a generalized
kinematic constraint which we call simplex constraint. The denom-
ination refers to the physical content of such a constraint, that is, it
may express the ‘volume’ of an arbitrary simplex instead of a sim-
ple length (of a bar); for instance, area of a triangle spanned by
three nodes in a two- or higher-dimensional space or volume of
a tetrahedron in three- (or, theoretically, higher-) dimensional
space. Conditions of applicability of simplices with zero volume
(called degenerate simplices hereinafter) are also analysed.

With the help of this generalized truss model, we want to put
different modelling techniques (e.g. used for traditional truss
structures or for bar structures with sliding connections) in a uni-
fied framework, as well as to suggest some other applications. We
will follow a similar path as in Tarnai and Szabó (2002) discussing
traditional bar-and-joint assemblies or in Kovács and Tarnai (2009)
for the spherical adaptation of the same.

The outline is as follows: in Section 2, a brief resume of the
Hellinger–Reissner principle and the corresponding tangent stiff-
ness formulation for bar-and-joint assemblies (trusses) is given.
Afterwards, Section 3 provides an extension of the previous
theory to higher-dimensional cases, whose mathematical back-
ground is presented in Section 4, together with some comments
on the existence of second-order rigidity in Section 4.4. Section 5
contains illustrative sample problems showing low-level applica-
bility of the simplex constraints, while the closing Section 6
gives the summary of the work done, completed by mentioning
some further applications and problems that need investi-
gation.
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2. Potential energy and tangent stiffness

If the expression of the total (internal and external) potential
energy of an assembly is supplemented by some terms expressing
the product of a kinematic constraint function with its Lagrange
multiplier, the Hellinger–Reissner functional (PR) is obtained.
According to the Hellinger–Reissner principle, the solution to this
constrained extremum problem yields an equilibrium configura-
tion of the assembly which also obeys the compatibility conditions.
With the assumption of a linearly elastic material behaviour, it is
possible to rewrite this functional in terms of displacement
variables only, since Lagrange multipliers can then be regarded
as internal force variables (Lanczos, 1986). Considering the formula
(written, e.g. for bar-and-joint assemblies with m joints and
n bars)

PR ¼ �
Xdm

l¼1

Pl xl � x0
l

� �
þ 1

2

Xn

m¼1

gmðemÞ2 þ
Xn

m¼1

eF mKm; ð1Þ

the first term gives the external potential (the negative of the work
done by external forces): here d is the number of dimensions of the
Euclidean space in which the assembly is analysed; Pl stands for
the lth external force component, while xl and x0

l denote the lth
current and reference coordinates, respectively. The next term de-
scribes the internal potential in terms of the unloaded length lu

m , axial
stiffness gm (generally, gm ¼ EmAm=lu

m) and elastic elongation em of the
mth member (bar). Note that ‘unloaded length’ in this context means
the length of a member with no internal force and kinematic load
(i.e., change in length due to thermal effect or manufacturing error).
This is not to be confused with reference coordinates that can be as-
sumed arbitrarily and therefore do not define necessarily the un-
loaded length of a bar member. Of course, if there exists a
compatible configuration for an assembly with no kinematic loads
or internal forces (that is not always the case), it is logical to con-
sider the coordinates of one of such configurations as reference
coordinates. Finally, in the third term of PR, Km is the Lagrange mul-
tiplier of the constraint function eF m, whose canonical form is as
follows:eF m ¼ lmðx1; . . . ; xdmÞ � lum � em � tm ¼ 0: ð2Þ

Here tm is the elongation component defined earlier as kinematic
load. Let us call the attention to that tm is often used to denote ten-
sion, that is, axial force in the mth bar. In our case, axial force is de-
noted by Km. Writing the formula for linear elasticity,

em ¼ Km=gm ð3Þ

in both Eqs. (1) and (2), as well as introducing Fm as

Fm ¼ eF m þ em; ð4Þ

PR can be transformed into the following form:

PR ¼ �
Xdm

l¼1

Pl xl � x0
l

� �
� 1

2

Xn

m¼1

K2
m

gm
þ
Xn

m¼1

FmKm; ð5Þ

dependent only on displacement and internal force variables. Con-
sider now the first variation of Eq. (5):

dPR ¼
Xdm

l¼1

@PR

@xl
dxl þ

Xn

m¼1

@PR

@Km
dKm: ð6Þ

The system obeys equilibrium and compatibility conditions if and
only if dPR = 0; thus, derivatives according to displacement vari-
ables yield the equilibrium equations as follows:

Xn

m¼1

@Fm

@xl
Km � Pl ¼ 0; l ¼ 1; . . . ; dm; ð7Þ

or in matrix form:

Ak� p ¼ 0; ð8Þ

where A is the equilibrium matrix and

fAlmg ¼
@Fm

@xl
; kT ¼ ½K1; . . . ;Kn�; pT ¼ ½P1; . . . ; Pdm�:

Similarly, derivation according to internal force variables results in
the system of compatibility equationseF m ¼ 0; m ¼ 1; . . . ;n ð9Þ

that can be linearized by considering constant and linear terms only
in its Taylor expansion in the neighbourhood of reference coordi-
nates as follows:

Xdm

l¼1

@Fm

@xl
dxl þ l0

m � lu
m � em � tm ¼ 0; m ¼ 1; . . . ;n ð10Þ

(l0
m is the length of the mth bar when both of its connected nodes are

at reference position). In matrix form:

Cd� ee � et ¼ 0; ð11Þ

where C = AT and

fCmlg ¼
@Fm

@xl
; dT ¼ ½dx1; . . . ; dxdm�;

eT
e ¼ ½e1; . . . ; en�; eT

t ¼ �l0
1 þ lu

1 þ t1; . . . ;�l0n þ lun þ tn

h i
:

Note that lu
m � l0

m ¼ 0 unless reference coordinates do not define the
unloaded length for the mth bar.

After the equilibrium and compatibility equations having been
derived, it will be shown how the state equation (i.e., that links no-
dal loads and displacements) of the displacement method follows
from the Hellinger–Reissner principle. For this purpose, it is suffi-
cient to assume only that compatibility conditions under Eq. (9)
are satisfied: from Eq. (4) we obtain that Fm = em. Notice that it is
not a strong condition, since arbitrary kinematic loads can be
added to any member in order that the assembly can remain com-
patible with prescribed nodal positions. If Eq. (1) is rewritten in
function of Fm instead of Km, we have

P�R ¼ �
Xdm

l¼1

Pl xl � x0
l

� �
þ 1

2

Xn

m¼1

gmF2
m : ð12Þ

Its first variation according to nodal displacements reads

dP�R ¼
Xdm

l¼1

Xn

m¼1

gmFm
@Fm

@xl
� Pl

 !
dxl; ð13Þ

but can also be linearized using Eq. (10) as follows:

dP�R ¼
Xdm

l¼1

Xn

m¼1

gm

Xdm

u¼1

@Fm

@xu
dxu þ l0

m � lu
m � tm

 !
@Fm

@xl
� Pl

 !
dxl:

ð14Þ

The vanishing first variation means an equilibrium condition for the
assembly; it can be written with matrix notation as

Kad ¼ q; ð15Þ

where Ka is the (linear or material) stiffness matrix, q is the vector
of reduced loads and

Ka ¼ AGC; q ¼ p� AGet

with G = hg1, . . . ,gni being a diagonal matrix of axial stiffnesses. It is
possible to derive a more general form of the state equation that
also includes stiffness components (b) and (c), see the comments
at Eq. (19)
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The second variation of the potential energy over a compatible
displacement field can be interpreted in slightly different senses. In
the approach of Pellegrino and Calladine (1986) it provides infor-
mation about the positivity of work done by internal and external
forces on a displacement field (dx1, . . . ,dxdm). If Eq. (15) holds, the
same variation gives answer for stability problems of that equilib-
rium configuration (Tarnai and Szabó, 2002). With or without
obeying equilibrium conditions, however, it can also be regarded
as the first variation of Eq. (13), i.e. a quadratic form with the tan-
gent stiffness matrix:

d2P�R ¼
Xdm

u¼1

Xdm

l¼1

Xn

m¼1

gm
@Fm

@xu

@Fm

@xl
þ
Xn

m¼1

gmFm
@2Fm

@xl @xu

 !
dxl dxu: ð16Þ

With matrix notation, the first sum in the brackets corresponds
again to Ka, and therefore the second sum will be denoted by Kbc

since it should represent both parts (b) and (c) of the tangent stiff-
ness. Note that letters G for ‘geometrical stiffness matrix’ (Przemie-
niecki, 1968) and H for ‘Hessian matrix’ of �

P
KmFm (Tarnai and

Szabó, 2002) are also used for this latter component.
At the first sight, Eq. (16) still may seem to be insufficient to

separate the effect of initial member force (b) and the geometrical
stiffness (c). The key to this problem can be found in the structure
of Fm as a function of nodal coordinates. This will be studied in de-
tails in the next section.

3. Possibilities of generalization

Looking back to the formulae of Section 2, they can be inter-
preted in a much wider context than just that of a bar-and-joint
structure. It is possible to replace eF m by another constraint with dif-
ferent physical content (e.g. angle, area or volume, etc. instead of
distance); and simultaneously, to introduce work-compatible La-
grange multipliers (moment, edge load or pressure, etc., respec-
tively). This generalization preserves the validity of all former
equations, provided em, tm and gm are understood as (general) elastic
deformation, prescribed deformation and stiffness parameter (de-
fined by Eq. (3)): it is easy to see that the potential function still ex-
ists due to the conservative nodal loads and the assumption of
linear elasticity. There is only a restriction for the new constraint
functions: first and second derivatives of Fm must exist at the exam-
ined configuration of the assembly.

In the forthcoming sections, only constraint functions defining a
simplex in one, two or three dimensions will be dealt with. For the
sake of simplicity, they will be called ‘n-dimensional simplex con-
straints’ (or n-simplex constraints) with n = 1,2,3 meaning length
of a bar, area of a triangle and volume of a tetrahedron, respec-
tively. If necessary, a right superscript (n) will indicate the current
mechanical content, e.g. luð3Þ

m means the stress-free volume of the
mth tetrahedron of nodes. Note that if n is larger than one, these
simplex constraints generally do not correspond to a unique shape
for the simplex of n + 1 nodes: configurations of the same area/vol-
ume can transform among each other through finite mechanisms.

Let us consider again the constraint function eF m of Eq. (2) to-
gether with Fm of Eq. (4), now in a general sense. Since all terms
in Fm except for lm are constant, it is sufficient to analyse only the
current length (dimension). This is always a scalar–vector function,
often written as a kind of norm which appears then in a form of a
compound function:

lmðx1; . . . ; xdmÞ ¼ lmðBmðx1; . . . ; xdmÞÞ: ð17Þ

With this, the second derivative of Fm can be written as follows:

@2Fm

@xl @xu
¼ d2Fm

dB2
m

@Bm

@xl

@Bm

@xu
þ dFm

dBm

@2Bm

@xl @xu
: ð18Þ

Assuming also that dFm/dBm – 0, the second sum within the bracket
of Eq. (16) can be rearranged (with gmFm = Km), and thus for the tan-
gent stiffness finally we have:

d2P�R ¼
Xdm

u¼1

Xdm

l¼1

Xn

m¼1

gm
@Fm

@xu

@Fm

@xl
�
Xn

m¼1

�Km
d2Fm

dB2
m

dFm

dBm

� ��2
" #

@Fm

@xu

@Fm

@xl

 

þ
Xn

m¼1

Km
dFm

dBm

@2Bm

@xl @xu

!
dxl dxu: ð19Þ

Three terms within the common brackets correspond here to Ka, Kb

and Kc, respectively; and the expression in square brackets provides
a general interpretation of which is called ‘stress’ in rigidity litera-
ture. If it is denoted by xm, the formal analogy with the concept
of ‘modified material stiffness’ (Guest, 2006) becomes complete
by writing together the first two sums in the bracket of Eq. (19)
and Kb. In a matrix form it reads:

Ka þ Kb ¼ AðG�XÞC

with X = hx1, . . . ,xni being a diagonal matrix of stress values. Note
that the same terms Ka, Kb and Kc would have been obtained in Eq.
(15) if, instead of a pure linearization, second-order terms had also
been taken into account in the Taylor expansion of Fm in Eq. (13).
After plugging Eq. (18) into the expression of dP�R, the more general
formula (Ka + Kb + Kc)d = q of the state equation would have been
derived.

Let us now compare the above statements with the classical
bar-and-joint model. For the sake of a consistent notation, let the
coordinates of the ith node Ni be given as a vector xi = (x1,i,x2,i,x3,i)T,
and assume that the mth bar runs between N1 and N2. The con-
straint function of that bar is defined by the following
relationships:

lð1Þm Bð1Þm

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bð1Þm ðxa;iÞ

q
; i ¼ 1;2 and a ¼ 1;2;3;

Bð1Þm ¼ ðx1;1 � x1;2Þ2 þ x2;1 � x2;2ð Þ2 þ x3;1 � x3;2ð Þ2: ð20Þ

It is easy to verify that any first and second derivative of Bð1Þm ,

@Bð1Þm
@xa;i

¼ 2ðxa;i � xa;3�iÞ; ð21Þ

@2Bð1Þm
@xa;i @xb;j

¼ 2dabð2dij � 1Þ; ð22Þ

always exists (here dij is the Kronecker symbol). Looking at the
external derivatives,

dFð1Þm

dBð1Þm

¼ 1

2
ffiffiffiffiffiffiffiffi
Bð1Þm

q ; ð23Þ

d2Fð1Þm

dBð1Þ2m

¼ � 1

4
ffiffiffiffiffiffiffiffi
Bð1Þm

q 3 ; ð24Þ

they also always exist unless Bð1Þm ¼ 0, which could only happen if N1

and N2 coincide. Noting also that Eq. (23) is never zero, it follows
from (19) that

xð1Þm ¼ �Kð1Þm � 1

4
ffiffiffiffiffiffiffiffi
Bð1Þm

q 3

0B@
1CA 1

2
ffiffiffiffiffiffiffiffi
Bð1Þm

q
0B@

1CA
�2

¼ Kð1Þm =

ffiffiffiffiffiffiffiffi
Bð1Þm

q

¼ Kð1Þm =lð1Þm ; ð25Þ

in accordance with the original definition of ‘stress’.
Although the third term within the brackets of (19), together

with (22) and (23) yields a stress matrix with a general element
Kð1Þm =lð1Þm dabð2dij � 1Þ that seems to provide another general
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definition for xð1Þm , this will not be the case for higher-order sim-
plex constraints.

4. Simplex constraints

4.1. Mathematical formulation

Consider n + 1 vectors xi = (x1,i,x2,i, . . . ,xd,i)T = {xai}, a = 1, . . . ,d,
i = 0, . . . ,n (written in an orthogonal basis i1, . . . , id of a d-dimen-
sional (n 6 d) vector space Rd) defining an n-simplex in Rd. Let
us apply the notation wi = xi � x0, i = 1, . . . ,n that allows the
n-dimensional volume l(n) of such simplex to be written by the
Gram determinant formula (Gritzmann and Klee, 1994) as
follows:

lðnÞ ¼ 1
n!

wT
1w1 . . . wT

1wn

..

. . .
. ..

.

wT
nw1 . . . wT

nwn

��������
��������
1=2

: ð26Þ

Despite its compactness, the above formula has some disadvantages
(e.g., the apparent asymmetry in vectors xi) from the aspect of fur-
ther mathematical processes. Because of that, another formula will
be used in order to compute l(n) in Rd. First of all, consider the
expression

SðnÞj1 ;...jd�n
¼ 1

n!

1 1 . . . 1
x0ðj1 ;...jd�nÞ x1ðj1 ;...jd�nÞ . . . xnðj1 ;...jd�nÞ

���� ����; ð27Þ

where the vectors are obtained by removing d � n dimensions
(deleting d � n rows) of the original vectors xi (lengthy superscript-
ing lists all d � n removed dimensions; the number of possible
choices of SðnÞj1 ;...jd�n

is then d
n

� �
). Note that SðnÞj1 ;...jd�n

can be interpreted
as the n-dimensional signed volume of the projection of the original
n-simplex onto the n-dimensional subspace determined by non-re-
moved dimensions. It will be shown that the formula

lðnÞ ¼
X

SðnÞj1 ;...jd�n

� �2
� �1=2

ð28Þ

(where the summation is made over d
n

� �
n-subsets of d dimen-

sions) is equivalent to Eq. (26).
Using the theorem that jAjjAj = jATAj for a square matrix A, Eq.

(27) can be squared and rewritten in the form (instead of all en-
tries, the determinant itself is subscripted once for clarity):

SðnÞj1 ;...jd�n

� �2
¼ 1

n!

� �2

1þ xT
0x0 1þ xT

0x1 . . . 1þ xT
0xn

1þ xT
1x0 1þ xT

1x1 . . . 1þ xT
1xn

..

. ..
. . .

. ..
.

1þ xT
nx0 1þ xT

nx1 . . . 1þ xT
nxn

����������

����������
j1 ;...jd�n

:

ð29Þ

Now let us subtract the first row from all others, then the first
column from the others: these operations do not affect the value
of the determinant which can now be written in terms of wi as
follows:

SðnÞj1 ;...jd�n

� �2
¼ 1

n!

� �2

1þ xT
0x0 xT

0w1 . . . xT
0wn

wT
1x0 wT

1w1 . . . wT
1wn

..

. ..
. . .

. ..
.

wT
nx0 wT

nw1 . . . wT
nwn

����������

����������
j1 ;...jd�n

: ð30Þ

The determinant itself can now be written as a sum of two determi-
nants, that is:

1 0 . . . 0
0 wT

1w1 . . . wT
1wn

..

. ..
. . .

. ..
.

0 wT
nw1 . . . wT

nwn

����������

����������
j1 ;...jd�n

þ

xT
0x0 xT

0w1 . . . xT
0wn

wT
1x0 wT

1w1 . . . wT
1wn

..

. ..
. . .

. ..
.

wT
nx0 wT

nw1 . . . wT
nwn

����������

����������
j1 ;...jd�n

:

ð31Þ

However, the second term will vanish, which can be seen from its
dyadic product form below:

xT
0

wT
1

..

.

wT
n

266664
377775 x0 w1 . . . wn½ �

����������

����������
j1 ;...jd�n

: ð32Þ

Since any xi here is n-dimensional, it is a minimal dyadic decompo-
sition of an n + 1-by-n + 1 matrix with n dyads only, and its determi-
nant is necessarily zero. Consequently,

SðnÞj1 ;...jd�n

� �2
¼ 1

n!

� �2
wT

1w1 . . . wT
1wn

..

. . .
. ..

.

wT
nw1 . . . wT

nwn

��������
��������
j1 ;...jd�n

: ð33Þ

It is left only to see that the determinant in Eq. (26) is exactly
the sum of all those seen in (33). Instead of a rigorous proof, we
show rather give an example that can easily be generalized there-
after. Consider the determinant in Eq. (26) with n = 2, d = 3:

w11w11 þw21w21 þw31w31 w11w12 þw21w22 þw31w32

w12w11 þw22w21 þw32w31 w12w12 þw22w22 þw32w32

���� ����: ð34Þ

Since a determinant is linear in its columns, this may be written as a
sum of nine determinants as follows:

w11w11 w11w12

w12w11 w12w12

���� ����þ w11w11 w21w22

w12w11 w22w22

���� ����þ . . .þ
w31w31 w31w32

w32w31 w32w32

���� ����:
ð35Þ

In any of these nine second-order determinants, however, columns
pertaining to the same dimension will be linearly dependent (e.g.
the first determinant, whose first column multiplied by w12/w11

equals the second one), hence only those assembled of columns per-
taining to all different dimensions remain (e.g. the second determi-
nant, whose first column is related to the first, the second column to
the second dimension only, see the first subscript for the scalars w).
Eventually, any ordered n = 2-subset of column terms (pertaining to
different dimensions) will appear exactly once as a determinant.

Switching now to the other formulation, the sum of 3
2

� �
¼ 3 deter-

minants in the fashion of Eq. (33) reads:

w11w11 þw21w21 w11w12 þw21w22

w12w11 þw22w21 w12w12 þw22w22

���� ����
þ

w11w11 þw31w31 w11w12 þw31w32

w12w11 þw32w31 w12w12 þw32w32

���� ����
þ

w21w21 þw31w31 w21w22 þw31w32

w22w21 þw32w31 w22w22 þw32w32

���� ����: ð36Þ

Performing the same steps as before, it is obvious again from the
linearity that only the determinants composed of columns pertain-
ing to different dimensions will appear, exactly once. Consequently,
the volume of a 2-simplex (i.e., area of a triangle) in 3D can be com-
puted according to Eqs. (27) and (28) as follows:
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lð2Þ ¼ 1
2!

1 1 1
x11 x12 x13

x21 x22 x23

�������
�������
2

þ
1 1 1

x11 x12 x13

x31 x32 x33

�������
�������
2

þ
1 1 1

x21 x22 x23

x31 x32 x33

�������
�������
20B@
1CA

1=2

:

ð37Þ

A graphical interpretation of this result is shown in Fig. 1.

4.2. Cases of practical importance

In Euclidean spaces, of course, only six of the above listed pos-
sibilities (distance in one, two and three dimensions, area in two
and three dimensions and volume in three dimensions) have any
practical importance. As was seen in the preceding section, evalu-
ation of first and second derivatives of determinants constitutes
the basis for any numeric implementation. Let us consider first
the formula, e.g. of a fourth-order determinant using tensor
notation:

Dð4Þ ¼
X4

a;b;c;d;i;j;k;l¼1

xaixbjxckxdl�abcd�ijkl;

where �i j k l is the Levi-Cività symbol giving +1 and �1 if i, j, k, l
form an even or odd permutation of subscripts 1, 2, 3 and 4, respec-
tively, and zero otherwise (note that although it is possible to give a
general formulation for D(n), it does not help very much the under-
standing because of its multi-level subscripting). After replacement
of an arbitrary dimension d by a row of ones we obtain exactly n!Sð3Þd .
Formulae for Sð3Þd and its first and second derivatives are then as
follows:

Sð3Þd ¼
1
3!

X4

i;j;k;l¼1

X3

a;b;c¼1

xaixbjxck�abcd�ijkl;

@Sð3Þd

@xai
¼ 3 � 1

3!

X4

j;k;l¼1

X3

b;c¼1

xbjxck�abcd�ijkl;

@2Sð3Þd

@xai@xbj
¼ 2 � 3 � 1

3!

X4

k;l¼1

X3

c¼1

xck�abcd�ijkl:

This can easily be extended to smaller (higher) dimensions by sub-
tracting (adding) +1 to each number and removing (inserting) a
dimension in both subscripts. We note that, even if these summa-
tion formulae give a complete numerical foundation to any compu-
tation, it may be advisable to derive more compact forms (i.e.,
without summation) for particular cases to express directly the
compound derivatives of Fm with respect to particular xa,i, xb,j coor-
dinates. More details are presented in the Appendix.

4.3. Full-dimensional and degenerate constraints

Let a d-simplex in Rd be called full-dimensional. Furthermore, let
an n-simplex be called degenerate if l(n) = 0. With reference to the
formulae under Eqs. (17) and (27), a generalized simplex constraint
function Fm reads

FðnÞm ¼ lðnÞm ðxa;iÞ � luðnÞ
m � tðnÞm ¼ 0; where

lðnÞm BðnÞm

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðnÞm ðxa;iÞ

q
; i ¼ 0; . . . ;n and a ¼ 1; . . . ; d;

BðnÞm ¼
X

SðnÞj1 ;...jd�n
ðxa;iÞ

� �2
;

ð38Þ

see also Eq. (20) for the case of n = 1. Despite the uniform descrip-
tion, the constraint functions above are of two different kinds,
depending on the dimension of the simplex.

(i) If a simplex constraint is not full-dimensional (n < d), formu-

lae under (38) hold without change and derivatives of lðnÞm BðnÞm

� �
can be computed as already written for the length constraint in
3D, see Eqs. (23) and (24):

dFðnÞm

dBðnÞm

¼ 1

2
ffiffiffiffiffiffiffiffi
BðnÞm

q ; ð39Þ

d2FðnÞm

dBðnÞ2m

¼ � 1

4
ffiffiffiffiffiffiffiffi
BðnÞm

q 3 : ð40Þ

Since these derivatives do not exist for BðnÞm ¼ 0, degenerate simpli-
ces must not be allowed (note that derivatives of internal functions
still exist in any case), but otherwise the concept of stress can be ex-
tended according to Eq. (25) as follows:

xðnÞm ¼ KðnÞm =lðnÞm : ð41Þ

Relevant representatives of this class of simplex constraints are the
common truss members (one-dimensional constraints) in either
two or three dimensions, but triangular membrane elements
(two-dimensional constraints) in three dimensions also belong
here. It should be noted that such triangular constraints are suitable
only for modelling shearless membranes like, e.g. the soap mem-
brane, as the constraint function is sensible only to the area magni-
tude but not the shape of a triangle.

(ii-a) If a simplex constraint is full-dimensional (n = d) but
degenerate configurations are still not allowed, formulae under
(38), (23), (24) and (41) hold without change again, but lðnÞm can
be computed simply as the absolute value of a determinant:

lðnÞm ¼ abs
1
n!

1 1 . . . 1
x0 x1 . . . xn

���� ����� �
; ð42Þ

which is also equivalent to abs SðnÞnþ1ðxa;iÞ
� �

in d = n + 1 dimensions.

Two constraint types are important in this subclass: non-degener-
ate triangular and tetrahedral constraints in two and three dimen-
sions, respectively (theoretically, there may be defined a signed
length in a given direction to form a full-dimensional constraint
in 1D, but it does not seem to have many applications). Tetrahedral
constraints can be used for modelling 3D shearless continua like
gases and fluids, while (co-)planar triangular ones seem to be

Fig. 1. Interpretation of the volume of a d � 1-simplex in Rd for the case d = 3. Sð2Þd

means here the (scalar and signed) volume of the projection of the original simplex
onto the d � 1-dimensional subspace orthogonal to the dth coordinate axis. Dark
projection corresponds to negative signed volume; d = x, y, z, n and ni are unit
normal vectors.
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applicable in 2D-models of the same materials. It is worth mention-
ing further applications in rigid kinematic modelling: for example,
such a tetrahedral (triangular) constraint with three (two) fixed
nodes constrain the remaining one to move finitely in a given plane
(line), which is at least difficult to realize by pin-jointed truss
members.

(ii-b) If a simplex constraint is full-dimensional (n = d), its con-
straint function can also be considered as the signed value of the
determinant in Eq. (42) which now reduces to a dth-order polyno-
mial, making possible to analyse the degenerate configurations,
but stress (at least as suggested in Eq. (19)) cannot be defined
there. Accordingly, the stiffness components Kb and Kc (i.e., the ef-
fect of initial internal forces) appear jointly as Kbc, returning the

Hessian matrix of Km
1
n!

1 1 . . . 1
x0 x1 . . . xn

���� ���� ¼ KmSðnÞnþ1ðxa;iÞ itself, see

also the different structure of Eqs. (16) and (19) for explanation.
This last subclass can be considered as the major innovation of
generalized truss theory, since degenerate constraint in a common
truss cannot be defined. Characteristically, they are applicable in
modelling phenomena of lower dimension than the constraints
are defined in: Example 1 in Section 5 will show the use of degen-
erate 2D simplices to simulate the behaviour of a straight scissor
member, while in Example 2 degenerate tetrahedra will be used
to model two straight elements moving in a common plane. With
rigid material behaviour, this usage corresponds again to the kine-
matic modelling, but Example 2 also demonstrates how degenerate
constraints are applicable in elastic models as well.

Note finally that elastic simplex constraints pertaining to any
class above can freely be defined with zero unloaded length, area
or volume (it is worth remarking here that soap membrane is a
good example for an elastic assembly with practically zero un-
loaded area), since they are not said to be degenerate as far as they
are analysed in a non-degenerate configuration: we recall that
existence of the derivatives depends on the current n-dimensional
length. In this sense, any elastic triangular (tetrahedral) simplex
constraint with zero unloaded area (volume) can be considered
as a type of generalization of ‘zero free-length’ springs discussed
in Schenk et al. (2007).

4.4. Higher-order rigidity

Rigidity literature provides definitions for the so-called higher-
order rigidity or stiffness; a brief overview and further references
can be found in Kovács and Tarnai (2009). In our approach, a struc-
ture is considered to be rigid to the first order if and only if its com-
patibility matrix C has full rank, independently of a rigid or
deformable material model (‘first order’ reflects that compatibility
conditions form a linear equation system for the displacement
components). If the nullspace of C is not empty, the structure is
rather a first-order infinitesimal mechanism, but it still can have
some stiffness against finite mobilization. Positivity of the second
variation of P�R is the condition of stable equilibrium, which can
also hold if the contribution of stiffness members Ka and Kb vanish
when a first-order mechanism is mobilised (we recall that a dis-
tinct Kb can only be defined in the presence of at least one non-
degenerate simplex constraint). Let D represent a matrix contain-
ing all independent mechanisms column-wise in a certain basis,
making possible to write any mechanism in the form Da, where
a is an arbitrary vector of coefficients. Now the second variation
of P�R reduces to the quadratic form aTWa with W = DTKcD called
the reduced form (Guest, 2006; Tarnai and Szabó, 2002) of the tan-
gent stiffness matrix. Clearly, sign definiteness of W is then a proof
for the second-order rigidity (without respect to stiffness parame-
ters again), since the geometrical stiffness member Kc is assembled
of second derivatives. Higher-order rigidity conditions could then

be analysed in the same way, using higher-order derivatives and
tensorial objects.

Existence of such higher-order rigidity is crucial in common
tensegrity trusses, since it is equivalent to the possibility of stabi-
lizing of an equilibrium configuration by pre-stressing. Although
numeric examples that can prove the following statement would
exceed the limits of this paper, the simple analogy with common
truss elements suggests that similar behaviour can be observed
in structures with higher-dimensional non-degenerate simplex
constraints. For example, confined triangular elements filling a
bounded plane area seem to form an assembly that is rigid to the
second order against any out-of-plane displacement, since it can
be stabilized by a uniform tension as state of self-stress.

In the case of degenerate simplex constraints, W should be de-
fined as DTKbcD but all other statements about second-order rigid-
ity still apply. Let us note an interesting feature of Kbc derived from
any full-dimensional (but not necessarily degenerate) constraint,
namely, that there are all zeros in its main diagonal due to the dou-
ble derivation. Despite the first intuition, however, it does not ex-
clude sign definiteness of W, i.e. after the vector space of
admissible displacement having been restricted (see Example 3).

5. Examples

5.1. Example 1: rigid bars with intermediate joints

In this example, a mechanical model of a structural solution (we
call it ‘non-breaking bar’) is presented, where an extra node is
introduced in the interior of a bar. It can be particularly useful in
modelling scissor-like connections, used frequently in deployable
structures (see e.g. You and Pellegrino, 1997). For this reason, let
us consider a structural unit (shown in Fig. 2b) of the well-known
‘Nuremberg scissors’ (Fig. 2a).

Since our problem is two-dimensional, it can be assumed that
the structure lies in the xy plane. The statical model departs from
four bar (or 1D simplex) elements and is completed by two degen-
erate 2D simplex elements (that are necessarily full-dimensional)
in order to prevent the scissor members from breaking at their
midpoint. The equilibrium matrix of such a structure, with refer-
ence to Appendix B and writing c instead of (a2 + b2)1/2, reads:

ð43Þ

where the two- and three-character labels in the column headings
refer to the corresponding length and area constraints, respectively.
It can be shown that A has full rank, in addition, its inverse is

A�1 ¼ 1

2abc2

2b3c 2a3c bc3 ac3 2bc3 2ac3

2a2bc 2ab2c

�4ab2 4a2b

2bc3 �2ac3 bc3 �ac3 2b3c �2a3c

2a2bc �2ab2c

4ab2 4a2b

26666666664

37777777775
;

ð44Þ
which makes possible to get the vector k of internal forces from
given nodal loads p. If external nodes A and B are also taken into ac-
count by adding four rows to A according to the external reactions
Ax, Ay, Bx and By, respectively (let this supplement be denoted by
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Aext), the 4-element vector pext of reactions at A and B can be com-
puted as follows:

pext ¼ AextA
�1p: ð45Þ

Considering now the elements of the coefficient matrix,

ð46Þ

reaction forces due to elementary loading cases can be read col-
umn-wise. For instance, two columns in the middle reflect a purely
truss-like behaviour, while a vertical load applied at node 1 results
in reactions drawn in Fig. 2c. (Note just as an illustration that by
replicating such scissor-like structural units, one can obtain a
2an-long structure, where the external reactions from forces pi

(i 6 n) applied in the middle or at the right hand side of the ith scis-
sor element can be obtained from the matrix power expression
�[(�AextA�1)*]ipi, where (�AextA�1)* is generated by introducing
two empty rows into the middle of AextA�1.)

5.2. Example 2: sliding elastic bars

Tarnai and Makai (1989) investigated a finite mechanism com-
posed of two tetrahedral trusses, where each edge (bar) of one tetra-
hedron was constrained to slide along a bar of the other tetrahedron.
By neglection of the thickness of the bars, each pair of connected bars
can be regarded as a degenerate 3D simplex constraint. Although the
referenced mobility analysis of tetrahedra was based on a kinematic
constraint function like Eq. (2), only the kinematic behaviour of a ri-
gid assembly has been analysed. In our example, however, a com-
plex static–kinematic approach of such sliding pair of bars with
elastic material behaviour will be presented.

Consider two connected bars of length l1 and l2 running be-
tween points A, C and B, D, respectively, as shown in Fig. 3. Let

the position vectors of A, B, C, D be denoted by a, b, c, d, respec-
tively. Furthermore, let a vector pointing along the normal trans-
versal of the bars be defined as w = (c � a) � (d � b). Writing the
position vector of the intersection of the normal transversal and
BD in two different ways we have:

aþ aðc� aÞ þ cw ¼ bþ bðd� bÞ; ð47Þ

where a, b and c are scalars and any of them can be determined eas-
ily by forming scalar triple products with the (vectorial) coefficients
of the two other scalars. The formal results are as follows:

a ¼ ððc� aÞ � ðd� bÞÞTððb� aÞ � ðd� bÞÞ
ððc� aÞ � ðd� bÞÞ2

; ð48Þ

b ¼ ððc� aÞ � ðd� bÞÞTððb� aÞ � ðc� aÞÞ
ððc� aÞ � ðd� bÞÞ2

; ð49Þ

c ¼ ðb� aÞðc� aÞðd� bÞ
ððc� aÞ � ðd� bÞÞ2

: ð50Þ

Fig. 2. Nuremberg scissors: the complete assembly (a); a structural unit composed of a pair of non-breaking bars represented by full-dimensional degenerate 2D simplex
constraints (b); reaction forces due to a unit vertical load applied at node 1 (c).

Fig. 3. Pair of sliding bars: dimensions of an unloaded configuration, i.e. where the
bar axes intersect (a), deformed shape of connected elastic bars: the distance jcwj
between lines AC0 and BD (obtained here from the modified position vector c0) can
be considered parallel to dC because of the assumption of small displacements (b)
and internal moment diagrams (drawn onto the tensile side) of connected bars (c).
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The last expression reflects that intersecting (straight) bars make c
vanish. From now on, suppose that a and b are known in a given
compatible configuration of ABCD that defines a 3D simplex con-
straint. If the assembly becomes loaded, a force P appears in a direc-
tion perpendicular both to AC and BD as shown in Fig. 3c and, if the
bending stiffness of the bars EI1 and EI2 is finite, it comes together
with a deformation sketched in Fig. 3b. In order to simplify further
calculations of stiffness parameter g(3), we take the assumption of
small displacements. In this case, the deformed shape of the (orig-
inally degenerate) tetrahedron ABCD can be characterized by a sin-
gle parameter: by keeping nodes A, B and D fixed, that parameter
will be the off-plane displacement dC of node C. Using, e.g. the prin-
ciple of virtual work, dC can be expressed (with respect to FC = aP
from the condition of equilibrium) as follows:

dC ¼
P

3a
l31

EI1
a2ð1� aÞ2 þ l3

2

EI2
b2ð1� bÞ2

 !
: ð51Þ

Since the internal work of the elastic deformation can also be writ-
ten in terms of pressure and volumetric increase, the following rela-
tionship is obtained:

FCdC ¼ pDV ; ð52Þ

where DV = ACdC/3, and AC = l1l2asinu/2, using the notation of
Fig. 3a and b. Plugging these latter expressions into Eq. (52), after
rearrangement we have

p ¼ 6P
l1l2 sin u

: ð53Þ

We recall that here p = K(3) and DV = e(3) with our general notation.
Thus, with Eq. (3) the stiffness parameter g(3) can be expressed as
follows:

gð3Þ ¼ pDV�1 ¼ 6P
l1l2 sin u

6
l1l2a sinudC

¼ 108

ðl1l2 sin uÞ2
l3
1

EI1
a2ð1� aÞ2 þ l3

2

EI2
b2ð1� bÞ2

 !�1

: ð54Þ

We note that this stiffness formula with coefficients derived from
Eqs. (48)–(50) also holds if ABCD is not coplanar in a given configu-
ration, provided the displacements are still small enough to accept
the relationship of Eq. (51).

After such a preliminary study on stiffnesses, let us consider an
assembly composed of two degenerate 3D simplex constraints
according to Fig. 4 as a statical model of a primitive bridge made
of overlapping pin-jointed beams. We want to determine the reac-
tions and deflections due to the force Q.

Assume that four bars have infinite normal stiffness but their
bending stiffness EI is finite. Let all external (supported) nodes be

labelled by letters A, B, C, D to distinguish internal (unsupported)
nodes that are numbered. Because of the inextensional mode, the
assembly has only two kinematical degrees of freedom (displace-
ments along z1 and z2), hence the four first-order simplex con-
straints represented by the bars can be left out of consideration
in the following. In accordance with paragraph (ii-b) in Section
4.3, let the four nodes be arranged in the constraint functions in
counterclockwise order 12AB and 21CD, giving

lð3Þ1 ¼
1
6

1 1 1 1
c b 0 0
0 a a 0
0 0 0 0

���������

���������; lð3Þ2 ¼
1
6

1 1 1 1
b c bþ c bþ c

a 0 0 a

0 0 0 0

���������

���������: ð55Þ

The nonzero derivatives (with respect to z1 and z2) are then

@Fð3Þ1

@z1
¼ �1

6

1 1 1
b 0 0
a a 0

�������
������� ¼ �

ab
6
;

@Fð3Þ1

@z2
¼ 1

6

1 1 1
c 0 0
0 a 0

�������
������� ¼

ac
6
;

@Fð3Þ2

@z1
¼ 1

6

1 1 1
b bþ c bþ c

a 0 a

�������
������� ¼

ac
6
;

@Fð3Þ2

@z2
¼ �1

6

1 1 1
c bþ c bþ c

0 0 a

�������
������� ¼ �

ab
6
:

Note that each of the above elements (arranged anyway as in the
compatibility matrix) corresponds to one third of the triangle area
Am,i opposite to node i in the mth constraint. The first important
observation is that C is nonsingular if b – c, showing that our
assembly has no first-order mobility. From the equilibrium Eq.
(8), all (generalized) internal forces can be determined explicitly:

k ¼ C�Tp ¼ 6

aðc2 � b2Þ
b c

c b

� 	 �Q
0

� 	
¼ 6Q

aðb2 � c2Þ
b

c

� 	
: ð56Þ

External reactions can now be obtained using the full equilibrium
matrix, completed by four rows corresponding to supported nodes
in the order A, B, C, D at the bottom as follows:

pfull ¼ CT
fullk ¼

a
6

�b c

c �b

�c

b

�c

b

2666666664

3777777775
b

c

� 	
6Q

aðb2 � c2Þ
¼ Q

b2 � c2

0
0
�bc

b2

�c2

bc

2666666664

3777777775
:

ð57Þ

The results above are shown in Fig. 5a. Deflections are calculated
using the stiffness matrix. The 2-by-2 matrix C is used again to
evaluate Ka = CTGC, giving:

Fig. 4. Structure with two 3D degenerate simplex constraints: empty circles denote
ball joints, gray patches symbolize sliding connections. Only the bending stiffness of
the bars is considered to be finite.

Fig. 5. Reactions (a) and deflections (b) of the example structure. Note the different
curvatures of the deflected beams: in a physical model, members A1 and 2C would
run above their connected counterpart.
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Ka ¼
a
6
�b c

c �b

� 	T g1

g2

� 	 �b c

c �b

� 	
a
6

¼ a2

36
g1b2 þ g2c2 �ðg1 þ g2Þbc

�ðg1 þ g2Þbc g1b2 þ g2c2

" #
: ð58Þ

We note that Kbc vanishes, since the displacements of nodes 1 and 2
are both vertical, and any second derivative of a determinant Fð3Þi

with respect to z coordinates is zero. With a further assumption that
g1 = g2 = g (superscript (3) is omitted for brevity) we have

K ¼ ga2

36
b2 þ c2 �2bc

�2bc b2 þ c2

" #
: ð59Þ

Finally, the two-element deflection vector is obtained by solving the
equation of state Kd = p as follows:

d ¼ 36

ga2ðb2 � c2Þ2
b2 þ c2 2bc

2bc b2 þ c2

" #
�Q

0

� 	
¼ 36Q

ga2ðb2 � c2Þ2
b2 þ c2

2bc

" #
;

ð60Þ

see also the graphics in Fig. 5b.

5.3. Example 3: 3D simplex constraint and second-order rigidity

Consider the previous assembly with a simplified geometry
(c = b). Instead of diagonal bracing elements, let nodes 1 and 2 be
constrained by two sliders of angle a and b to the horizontal in
planes perpendicular to y as shown in Fig. 6 (the two degenerate
simplex constraints remain: both can now be imagined as a com-
pound of two connected telescopic bars, which are not drawn in
the figure). Considering nodes 1 and 2 being constrained by a slider
of a single kinematical degree of freedom each, matrix C can now
be written, e.g. as

C ¼

0 �ac=6 0 ac=6
0 ac=6 0 �ac=6

sin a � cos a 0 0
0 0 sin b � cos b

26664
37775; ð61Þ

where the order of columns and rows correspond to x1, z1, x2, z2, as
well as 12AB, 21CD, slider 1, slider 2, respectively. It follows from a
minimal dyadic decomposition of C that its rank deficiency is 1, so
there is only one state of self-stress k and one infinitesimal mecha-
nism d for the assembly. It can be shown by a simple left multipli-
cation by C or CT that kT = [K K 0 0]; dT = [cota 1 cotb 1]. Let us
check whether or not the assembly can be stiffened by pre-stress-
ing: since the volume constraints are degenerate, Kbc should be
assembled. For example, the top right element of that 4-by-4 matrix
is obtained from the following scheme:

K1
@2Fð3Þ1

@x1 @z2
þK2

@2Fð3Þ2

@x1 @z2
¼ K

6
ð�1Þðþ1Þ

1 1
a 0

���� ����þ ðþ1Þðþ1Þ
1 1
0 a

���� ����� �
;

ð62Þ

where bracketed coefficients refer to the successive use of
checkerboard rule in determinant expansion. With the complete
matrix,

Kbc ¼
Ka
3

1
�1

�1
1

26664
37775; ð63Þ

the reduced form of the complementary stiffness matrix (now of
size 1-by-1) can be obtained as follows:

D ¼ dTKbcd ¼ 2Ka
3
ðcot a� cot bÞ: ð64Þ

This result shows that once b – a, D is sign definite, therefore our
assembly, even if an infinitesimal mechanism, is rigid to the second
order.

6. Discussion

In the present paper, an attempt was made to describe the rela-
tionship of different kinematic constraints and stiffness in a unified
framework on the basis of a potential energy principle. It was
proved that the common truss theory is based on a special kine-
matic constraint which is part of a broader set, called the set of
‘n-dimensional simplex constraints’. After the introduction of the
concept of ‘full-dimensional simplex constraint’, it has also been
shown that such constraints can be formulated with zero volume
as well, making possible to insert earlier mathematical models
(e.g. for sliding connected bars) into the global truss theory gener-
alized by simplex constraints. In addition, the concept of ‘stress’
used in the literature has been extended to the set of simplex con-
straints. The presented way of derivation of stress implies its exis-
tence if the constraint function is a compound function expressing
metric properties, therefore no stress value can be associated to
degenerate constraints. Three examples were attached to illustrate
the application of simplex constraints assuming rigid as well as
elastic material behaviour, completed by investigations on sec-
ond-order rigidity which led to the statement that even zero-vol-
ume (degenerate) constraints can result in additional (second-
order) stiffness via pre-stressing.

A question can still arise about why non-degenerate 2D and 3D
constraints are missing from those examples. The obvious answer
is that such constraint types can be used to advantage in kinemat-
ically indeterminate systems like some models for membrane
structures and shearless continua, where the equilibrium configu-
ration is to be found. Although iterative form-finding procedures
used in cable networks could easily be extended to simplex con-
straints as well, the computational work of such problems exceeds
the limits of brief parametric examples.

In the lack of such experiences, further investigations may be
necessary to clarify the applicability of higher-dimensional con-
straints in analysing bubble-like structures. In this aspect, an extra
consideration can also be added by mentioning that a constraint
function formulated as a sum of other constraint functions rules
an ‘average’ behaviour characterized by ‘unified’ variables (for clar-
ity: if the sum of the length of all sides of a triangle is constrained,
the corresponding force parameter can be understood as a (unique)
force arising in a rope bounding the triangle), which probably al-
lows the simultaneous control, e.g. over the volume and surface
parameters of bubbles in foams.

Fig. 6. Assembly composed of two degenerate tetrahedral constraints. Double lines
represent oblique sliders with a single kinematical degree of freedom.
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Appendix A. Area constraints in three dimensions

Let an area constraint in the 3D space be defined by three non-
collinear nodes xi = (x1,i,x2,i,x3,i)T (i = 1,2,3) bounding an area lð2Þm
(from now on, subscripts m are omitted for clarity). Consider Eq.
(37) as the point of departure. It can be rewritten with the formal-
ism of Eq. (38) as

lð2Þ ¼ ðBð2ÞÞ1=2
;

Bð2Þ ¼ ðSð2Þ3 Þ
2 þ Sð2Þ2

� �2
þ Sð2Þ1

� �2
:

ðA:1Þ

If both subscripts i and a are interpreted cyclically as 1,2,3,1, . . .

henceforth, we can write for the first derivative of B(2) that

@Bð2Þ

@xa;i
¼ 2 Sð2Þaþ1

@Sð2Þaþ1

@xa;i
þ Sð2Þaþ2

@Sð2Þaþ2

@xa;i

 !
¼ 2 Sð2Þaþ1ðxaþ2;iþ2 � xaþ2;iþ1Þ � Sð2Þaþ2ðxaþ1;iþ2 � xaþ1;iþ1Þ

� �
: ðA:2Þ

In order to write the second derivatives as well, two extra consider-
ations will be needed. We recall first that any odd-order determi-
nant is invariant under a permutation of rows (columns) that
preserves their (cyclic) order: it makes possible to rearrange the
3-by-3 matrix of coordinates such that xa,i is the central element;
consequently, the possible kinds of second derivatives are reduced
to nine. Secondly, the sequence of derivations is reversible, so there
exist only five relative positions for any two of the coordinates as
shown in Fig. A.1.

With the above considerations, the five kinds of second deriva-
tives are as follows (written according to the figure for the sake of
compactness, but general formulae in the fashion of Eq. (A.2) can
be obtained by adding a � 2 and i � 2 in a cyclic sense to the first
and second subscripts, respectively):

@2Bð2Þ

@x2
22

¼ 2ðx13 � x11Þ2 þ 2ðx33 � x31Þ2;

@2Bð2Þ

@x22 @x32
¼ 2ðx21 � x23Þðx33 � x31Þ;

@2Bð2Þ

@x22 @x33
¼ 2ðx22 � x21Þðx33 � x31Þ þ 2Sð2Þ1 ;

@2Bð2Þ

@x22 @x23
¼ 2ðx12 � x11Þðx11 � x13Þ þ 2ðx31 � x32Þðx33 � x31Þ;

@2Bð2Þ

@x22 @x13
¼ 2ðx21 � x22Þðx11 � x13Þ � 2Sð2Þ3

ðA:3Þ

Completed by formulae under Eqs. (39) and (40), everything is
ready to be plugged into either Eqs. (7), (10) or (18). The definition
formula for the generalized stress, similar to (25), reads:

xð2Þ ¼ Kð2Þ=lð2Þ; ðA:4Þ
but K(2) is now a force distributed over a distance; therefore, x(2)

(like the stiffness parameter g(2)) has a unit of force over distance
to the third power.

Appendix B. Full-dimensional area constraints

Let an area constraint be defined by three coplanar nodes
xi = (x1,i,x2,i)T (i = 1,2,3) bounding an area l(2) in a 2D vector space.
In contrast to Eq. (A.1), B(2) should either be written as single-term

expression

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð2Þ3

� �2
r

¼ abs Sð2Þ3

� �
or, if a degenerate configuration is

analysed, simply as Sð2Þ3 . Note that in this latter case, the sign of

signed area Sð2Þ3 is determined by the succession of nodes within

the constraint function. First and second derivatives of Sð2Þ3 with re-
spect to xa,i can be computed with cyclic subscripts a = 1,2,1, . . .,
i = 1,2,3,1, . . . directly as follows:

@Sð2Þ3

@xa;i
¼ 1

2
ðxaþ1;iþ2 � xaþ1;iþ1Þð�1Þa; ðB:1Þ

@2Sð2Þ3

@xa;i @xaþ1;iþ1
¼ �1

2
ð�1Þa and zero otherwise: ðB:2Þ

Note that the above expression for the first derivative have already
been referred in Eq. (A.2). As an immediate consequence of Eq. (B.2),
the matrix Kbc of any individual full-dimensional area constraint
has the following form:

ðB:3Þ

Appendix C. Volume constraints

Consider finally a volume constraint (which is necessarily full-
dimensional in 3D) defined by four nodes xi = (x1,i,x2,i,x3,i)T

(i = 1,2,3,4) bounding a volume l(3). Let us choose the interpreta-
tion lð3Þ ¼ Sð3Þ4 (i.e., degenerate constraints are allowed). Due to
the increased number of variables, the derivative formulae will
be given here, instead of cyclic subscripting, with the aid of subde-
terminants D(a,b,. . .)(i,j,. . .) meaning determinants obtained by dele-
tion of row(s) a,b, . . . and column(s) i, j, . . . of Sð3Þ4 . For the first and
second derivatives we have then

@Sð3Þ4

@xa;i
¼ 1

6
ð�1ÞaþiDðaÞðiÞ; ðC:1Þ

@2Sð3Þ4

@xa;i @xb;j
¼ 1

6
ð�1Þaþbþiþjsgnðða� bÞði� jÞÞDða;bÞði;jÞ: ðC:2Þ

If degenerate cases are excluded, it is still possible to choose the

interpretation lð3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sð2Þ3

� �2
r

. This modification implies two

consequences:

(i) in both derivative expressions, the results should be multi-
plied with the sign of Sð2Þ3 ;

(ii) the generalized stress,

Fig. A.1. Possible relative positions of any two of the nine coordinates xa,i. The
coordinates can always be permuted such that a given coordinate is moved to the
center (x22) without changing the value of any determinant Sd (d = x, y, z).
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xð3Þ ¼ Kð3Þ=lð3Þ ðC:3Þ

also becomes possible to interpret similar to that shown at the non-
degenerate area constraints.
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