Packing of equal circles on spherical caps

A. Lengyel and T. Tarnai Budapest University of Technology and Economics, Budapest, Műegyetem rkp. 3, H-1521 lengyel@eik.bme.hu, tarnai@ep-mech.me.bme.hu

We investigate the following problem: How must *n* equal circles be packed on a spherical cap of angular diameter (central visual angle) α without overlapping so that the angular radius of the circles will be as large as possible? If α is zero, the problem is reduced to finding the densest circle packing in a circle. If α is equal to 360 degrees, than the problem is identical to the Tammes problem (Fejes Tóth, 1964), that is, finding the densest circle packing on a sphere. It is apparent that if the angular diameter α varies from zero to 360° a transition from packing in a circle to packing on the sphere is obtained.

In this paper, on the basis of computer-based analysis, conjectured solutions to the problem for n = 2, 3, 4, 5, 6 will be presented for the complete range of α from zero to 360°. We will show how the packing density and the conjectured best circle configurations change with the angular diameter α of the spherical cap. The results will be given in the form of packing graphs and density diagrams.

A special emphasis will be put on the case $\alpha = 180^{\circ}$, that is, on the case of a hemisphere, since until now only point arrangements and not circle packings were studied on a hemisphere (Kertész, 1994). Practical importance of this problem at golf balls, geodynamic satellites, signal detecting devices, etc. will be shown.

The research was supported by OTKA grant no. K81146.

References

Fejes Tóth, L., 1964. Regular Figures. New York, Pergamon, Macmillan.

Kertész, G., 1994. Nine points on athe hemisphere. In: *Coll. Math. Soc. J. Bolyai 63* (eds: K. Böröczki and G. fejes Tóth), *Intuitive Geometry*, Szeged, 1991. North-Holland, Amsterdam, pp. 189-196.