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We investigate the following problem: How must n equal circles be packed on a spherical cap 

of angular diameter (central visual angle) α without overlapping so that the angular radius of 

the circles will be as large as possible? If α is zero, the problem is reduced to finding the 

densest circle packing in a circle. If α is equal to 360 degrees, than the problem is identical to 

the Tammes problem (Fejes Tóth, 1964), that is, finding the densest circle packing on a 

sphere. It is apparent that if the angular diameter α varies from zero to 360º a transition from 

packing in a circle to packing on the sphere is obtained. 

In this paper, on the basis of computer-based analysis, conjectured solutions to the problem 

for n = 2, 3, 4, 5, 6 will be presented for the complete range of α from zero to 360º. We will 

show how the packing density and the conjectured best circle configurations change with the 

angular diameter α of the spherical cap. The results will be given in the form of packing 

graphs and density diagrams. 

A special emphasis will be put on the case α = 180º, that is, on the case of a hemisphere, since 

until now only point arrangements and not circle packings were studied on a hemisphere 

(Kertész, 1994). Practical importance of this problem at golf balls, geodynamic satellites, 

signal detecting devices, etc. will be shown. 
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